DOI QR코드

DOI QR Code

Comparative effects of angiotensin II and angiotensin-(4-8) on blood pressure and ANP secretion in rats

  • Phuong, Hoang Thi Ai (Department of Physiology, Research Institute for Endocrine Sciences, Chonbuk National University Medical School) ;
  • Yu, Lamei (Department of Physiology, Research Institute for Endocrine Sciences, Chonbuk National University Medical School) ;
  • Park, Byung Mun (Department of Physiology, Research Institute for Endocrine Sciences, Chonbuk National University Medical School) ;
  • Kim, Suhn Hee (Department of Physiology, Research Institute for Endocrine Sciences, Chonbuk National University Medical School)
  • 투고 : 2017.06.28
  • 심사 : 2017.08.07
  • 발행 : 2017.11.01

초록

Angiotensin II (Ang II) is metabolized from N-terminal by aminopeptidases and from C-terminal by Ang converting enzyme (ACE) to generate several truncated angiotensin peptides (Angs). The truncated Angs have different biological effects but it remains unknown whether Ang-(4-8) is an active peptide. The present study was to investigate the effects of Ang-(4-8) on hemodynamics and atrial natriuretic peptide (ANP) secretion using isolated beating rat atria. Atrial stretch caused increases in atrial contractility by 60% and in ANP secretion by 70%. Ang-(4-8) (0.01, 0.1, and $1{\mu}M$) suppressed high stretch-induced ANP secretion in a dose-dependent manner. Ang-(4-8) ($0.1{\mu}M$)-induced suppression of ANP secretion was attenuated by the pretreatment with an antagonist of Ang type 1 receptor ($AT_1R$) but not by an antagonist of $AT_2R$ or $AT_4R$. Ang-(4-8)-induced suppression of ANP secretion was attenuated by the pretreatment with inhibitor of phospholipase (PLC), inositol triphosphate ($IP_3$) receptor, or nonspecific protein kinase C (PKC). The potency of Ang-(4-8) to inhibit ANP secretion was similar to Ang II. However, Ang-(4-8) $10{\mu}M$ caused an increased mean arterial pressure which was similar to that by 1 nM Ang II. Therefore, we suggest that Ang-(4-8) suppresses high stretch-induced ANP secretion through the $AT_1R$ and $PLC/IP_3/PKC$ pathway. Ang-(4-8) is a biologically active peptide which functions as an inhibition mechanism of ANP secretion and an increment of blood pressure.

키워드

참고문헌

  1. Carey RM, Siragy HM. Newly recognized components of the reninangiotensin system: potential roles in cardiovascular and renal regulation. Endocr Rev. 2003;24:261-271. https://doi.org/10.1210/er.2003-0001
  2. Guethe LM, Pelegrini-da-Silva A, Borelli KG, Juliano MA, Pelosi GG, Pesquero JB, Silva CL, Correa FM, Murad F, Prado WA, Martins AR. Angiotensin (5-8) modulates nociception at the rat periaqueductal gray via the NO-sGC pathway and an endogenous opioid. Neuroscience. 2013;231:315-327. https://doi.org/10.1016/j.neuroscience.2012.11.048
  3. Fyhrquist F, Saijonmaa O. Renin-angiotensin system revisited. J Intern Med. 2008;264:224-236. https://doi.org/10.1111/j.1365-2796.2008.01981.x
  4. Semple PF, Boyd AS, Dawes PM, Morton JJ. Angiotensin II and its heptapeptide (2-8), hexapeptide (3-8), and pentapeptide (4-8) metabolites in arterial and venous blood of man. Circ Res. 1976;39:671-678. https://doi.org/10.1161/01.RES.39.5.671
  5. Wilson WL, Roques BP, Llorens-Cortes C, Speth RC, Harding JW, Wright JW. Roles of brain angiotensins II and III in thirst and sodium appetite. Brain Res. 2005;1060:108-117. https://doi.org/10.1016/j.brainres.2005.08.032
  6. Campbell WB, Brooks SN, Pettinger WA. Angiotensin II- and angiotensin 3-induced aldosterone release vivo in the rat. Science. 1974;184:994-996. https://doi.org/10.1126/science.184.4140.994
  7. Yatabe J, Yoneda M, Yatabe MS, Watanabe T, Felder RA, Jose PA, Sanada H. Angiotensin III stimulates aldosterone secretion from adrenal gland partially via angiotensin II type 2 receptor but not angiotensin II type 1 receptor. Endocrinology. 2011;152:1582-1588. https://doi.org/10.1210/en.2010-1070
  8. Zini S, Fournie-Zaluski MC, Chauvel E, Roques BP, Corvol P, Llorens-Cortes C. Identification of metabolic pathways of brain angiotensin II and III using specific aminopeptidase inhibitors: predominant role of angiotensin III in the control of vasopressin release. Proc Natl Acad Sci U S A. 1996;93:11968-11973. https://doi.org/10.1073/pnas.93.21.11968
  9. Bader M. ACE2, angiotensin-(1-7), and Mas: the other side of the coin. Pflugers Arch. 2013;465:79-85. https://doi.org/10.1007/s00424-012-1120-0
  10. Kono T, Oseko F, Ikeda F, Nakano R, Taniguchi A, Imura H, Khosla MC. Biological activity of des-(Asp1, Arg2, Val3)-angiotensin II in man. Life Sci. 1983;32:337-343. https://doi.org/10.1016/0024-3205(83)90079-6
  11. McGrath MF, de Bold ML, de Bold AJ. The endocrine function of the heart. Trends Endocrinol Metab. 2005;16:469-477. https://doi.org/10.1016/j.tem.2005.10.007
  12. Dietz JR. Mechanisms of atrial natriuretic peptide secretion from the atrium. Cardiovasc Res. 2005;68:8-17. https://doi.org/10.1016/j.cardiores.2005.06.008
  13. Potter LR, Abbey-Hosch S, Dickey DM. Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocr Rev. 2006;27:47-72. https://doi.org/10.1210/er.2005-0014
  14. Oh YB, Gao S, Shah A, Kim JH, Park WH, Kim SH. Endogenous angiotensin II suppresses stretch-induced ANP secretion via AT1 receptor pathway. Peptides. 2011;32:374-381. https://doi.org/10.1016/j.peptides.2010.10.031
  15. Oh YB, Gao S, Lim JM, Kim HT, Park BH, Kim SH. Caveolae are essential for angiotensin II type 1 receptor-mediated ANP secretion. Peptides. 2011;32:1422-1430. https://doi.org/10.1016/j.peptides.2011.06.002
  16. Park BM, Oh YB, Gao S, Cha SA, Kang KP, Kim SH. Angiotensin III stimulates high stretch-induced ANP secretion via angiotensin type 2 receptor. Peptides. 2013;42:131-137. https://doi.org/10.1016/j.peptides.2013.01.018
  17. Park BM, Gao S, Cha SA, Park BH, Kim SH. Cardioprotective effects of angiotensin III against ischemic injury via the AT2 receptor and KATP channels. Physiol Rep. 2013;1:e00151. https://doi.org/10.1002/phy2.151
  18. Park BM, Cha SA, Lee SH, Kim SH. Angiotensin IV protects cardiac reperfusion injury by inhibiting apoptosis and inflammation via AT4R in rats. Peptides. 2016;79:66-74. https://doi.org/10.1016/j.peptides.2016.03.017
  19. Cha SA, Park BM, Gao S, Kim SH. Stimulation of ANP by angiotensin-(1-9) via the angiotensin type 2 receptor. Life Sci. 2013;93:934-940. https://doi.org/10.1016/j.lfs.2013.10.020
  20. Yu L, Yuan K, Phuong HT, Park BM, Kim SH. Angiotensin-(1-5), an active mediator of renin-angiotensin system, stimulates ANP secretion via Mas receptor. Peptides. 2016;86:33-41. https://doi.org/10.1016/j.peptides.2016.09.009
  21. Shah A, Oh YB, Shan G, Song CH, Park BH, Kim SH. Angiotensin-(1-7) attenuates hyposmolarity-induced ANP secretion via the $Na^{+}$-$K^{+}$ pump. Peptides. 2010;31:1779-1785. https://doi.org/10.1016/j.peptides.2010.06.013
  22. Shah A, Gul R, Yuan K, Gao S, Oh YB, Kim UH, Kim SH. Angiotensin-(1-7) stimulates high atrial pacing-induced ANP secretion via Mas/PI3-kinase/Akt axis and $Na^{+}/H^{+}$ exchanger. Am J Physiol Heart Circ Physiol. 2010;298:H1365-1374. https://doi.org/10.1152/ajpheart.00608.2009
  23. Yuan K, Cao C, Han JH, Kim SZ, Kim SH. Adenosine-stimulated atrial natriuretic peptide release through A1 receptor subtype. Hypertension. 2005;46:1381-1387. https://doi.org/10.1161/01.HYP.0000190041.61737.fd
  24. Han JH, Bai GY, Park JH, Yuan K, Park WH, Kim SZ, Kim SH. Regulation of stretch-activated ANP secretion by chloride channels. Peptides. 2008;29:613-621. https://doi.org/10.1016/j.peptides.2007.12.003
  25. Cui X, Wen JF, Jin JY, Xu WX, Kim SZ, Kim SH, Lee HS, Cho KW. Protein kinase-dependent and $Ca^{2+}$-independent cAMP inhibition of ANP release in beating rabbit atria. Am J Physiol Regul Integr Comp Physiol. 2002;282:R1477-1489. https://doi.org/10.1152/ajpregu.00316.2001
  26. Cho KW, Seul KH, Ryu H, Kim SH, Koh GY. Characteristics of distension-induced release of immunoreactive atrial natriuretic peptide in isolated perfused rabbit atria. Regul Pept. 1988;22:333-345. https://doi.org/10.1016/0167-0115(88)90110-3
  27. Cho KW, Lee SJ, Wen JF, Kim SH, Seul KH, Lee HS. Mechanical control of extracellular space in rabbit atria: an intimate modulator of the translocation of extracellular fluid and released atrial natriuretic peptide. Exp Physiol. 2002;87:185-194. https://doi.org/10.1113/eph8702302
  28. Cho KW, Kim SH, Hwang YH, Seul KH. Extracellular fluid translocation in perfused rabbit atria: implication in control of atrial natriuretic peptide secretion. J Physiol. 1993;468:591-607. https://doi.org/10.1113/jphysiol.1993.sp019790
  29. Braszko JJ, WŁasienko J, Kupryszewski G, Witczuk B, Wisniewski K. Behavioral effects of angiotensin II and angiotensin II-(4-8)- pentapeptide in rats. Physiol Behav. 1988;44:327-332. https://doi.org/10.1016/0031-9384(88)90033-9
  30. Ptasinska-Wnuk D, Mucha SA, Lawnicka H, Fryczak J, Kunert-Radek J, Pawlikowski M, Stepien H. The effects of angiotensin peptides and angiotensin receptor antagonists on the cell growth and angiogenic activity of GH3 lactosomatotroph cells in vitro. Endocrine. 2012;42:88-96. https://doi.org/10.1007/s12020-012-9659-2
  31. Vivar R, Soto C, Copaja M, Mateluna F, Aranguiz P, Munoz JP, Chiong M, Garcia L, Letelier A, Thomas WG, Lavandero S, Diaz-Araya G. Phospholipase C/protein kinase C pathway mediates angiotensin II-dependent apoptosis in neonatal rat cardiac fibroblasts expressing AT1 receptor. J Cardiovasc Pharmacol. 2008;52:184-190. https://doi.org/10.1097/FJC.0b013e318181fadd
  32. Ramracheya RD, Muller DS, Wu Y, Whitehouse BJ, Huang GC, Amiel SA, Karalliedde J, Viberti G, Jones PM, Persaud SJ. Direct regulation of insulin secretion by angiotensin II in human islets of Langerhans. Diabetologia. 2006;49:321-331. https://doi.org/10.1007/s00125-005-0101-7
  33. Kono T, Taniguchi A, Imura H, Oseko F, Khosla MC. Biological activities of angiotensin II-(1-6)-hexapeptide and angiotensin II-(1-7)-heptapeptide in man. Life Sci. 1986;38:1515-1519. https://doi.org/10.1016/0024-3205(86)90565-5

피인용 문헌

  1. Alamandine Protects the Heart Against Reperfusion Injury via the MrgD Receptor vol.82, pp.10, 2018, https://doi.org/10.1253/circj.cj-17-1381