DOI QR코드

DOI QR Code

An Experimental Study for the Effect of Operating Condition of the Air Handling Unit on the Performance of Humidifying Elements

공조기 운전 조건이 가습 소자의 성능에 미치는 영향에 대한 실험 연구

  • Kim, Nae-Hyun (Division of Mechanical Engineering, Incheon National University)
  • Received : 2018.08.02
  • Accepted : 2018.11.02
  • Published : 2018.11.30

Abstract

Evaporative humidification using a humidifying element is used widely for the humidification of a building or a data center. The performance of a humidifying element is commonly expressed as the humidification efficiency, which is assumed to be independent of the air temperature or humidity. To verify this assumption, a series of tests were conducted under two air conditions - data center ($25^{\circ}C$ DBT, $15^{\circ}C$ WBT) and commercial building ($35^{\circ}C$ DBT, $21^{\circ}C$ WBT) - using humidifying elements made from cellulose/PET and changing the frontal air velocity from 1.0 m/s to 4.5 m/s. Three samples having a 100 mm, 200 mm, or 300 mm depth were tested. The results showed that the humidification efficiency is dependent on the air condition. Indeed, even dehumidification occurred at the inlet of the humidifying element at the air condition of commercial building. This suggests that a proper thermal model should account for the inlet area, where the amount of moisture transfer may be different from the other part of the humidification element. As the depth of the element increased from 100 mm to 200 mm, the humidification efficiency increased by 29%. With further increases to 300 mm, it increased by 42%. On the other hand, the pressure drop also increased by 47% and 86%.

최근 들어 건물이나 데이터 센터의 공조에 기화식 가습기가 널리 사용된다. 일반적으로 가습 효율은 외기 조건에 관계없이 동일하게 적용된다. 하지만 이 부분에 대해서는 확인이 필요하다. 본 연구에서는 일반 건물과 데이터 센터의 설계 온습도 조건에서 일련의 실험을 수행하고 상기 가정이 적절한지를 판단하였다. 실험에 사용된 소자는 cellulose/PET 재질로 깊이 100mm, 200 mm, 300 mm 세 종류이고 전방 풍속 1.0 m/s에서 4.5 m/s 사이에서 수행되었다. 실험 결과 가습 효율은 외기 조건에 따라 차이가 났다. 데이터 센터 ($25^{\circ}C$ DBT, $15^{\circ}C$ WBT) 조건에서 건물 공조 ($35^{\circ}C$ DBT, $21^{\circ}C$ WBT) 조건보다 크게 나타났는데 그 이유는 입구 영역에서 수분 전달 성능의 차이 때문이다. 심지어 건물 공조 조건에서는 입구 영역에서 제습이 일어났다. 또한 공급수 온도가 외기 공기의 습구온도에 근접할수록 가습 효율이 증가함을 확인하였다. 따라서 가습소자의 성능을 적절히 예측하기 위해서는 입구 영역에 대한 해석 모델이 포함되어야 한다. 한편 소자의 두께가 100 mm에서 200 mm로 되면 가습효율이 29% 증가하고 300 mm가 되면 42% 증가한다. 하지만 압력 손실도 47%, 86% 증가한다.

Keywords

SHGSCZ_2018_v19n11_326_f0001.png 이미지

Fig. 1. Photo of the cellulose/PET humidifying element

SHGSCZ_2018_v19n11_326_f0002.png 이미지

Fig. 2. SEM photo of the cellulose/PET material

SHGSCZ_2018_v19n11_326_f0003.png 이미지

Fig. 3. Experimental apparatus

SHGSCZ_2018_v19n11_326_f0004.png 이미지

Fig. 4. Flow distribution at the header pipe

SHGSCZ_2018_v19n11_326_f0005.png 이미지

Fig. 5. Humidification efficiency vs. water flow rate

SHGSCZ_2018_v19n11_326_f0006.png 이미지

Fig. 6. Humidification efficiency (100 mm depth)

SHGSCZ_2018_v19n11_326_f0007.png 이미지

Fig. 7. Humidification efficiency (200 mm depth)

SHGSCZ_2018_v19n11_326_f0008.png 이미지

Fig. 8. Humidification efficiency (300 mm depth)

SHGSCZ_2018_v19n11_326_f0009.png 이미지

Fig. 9. Humidification efficiency (25oC/15oC, 10oC water)

SHGSCZ_2018_v19n11_326_f0010.png 이미지

Fig. 10. Humidification efficiency (35oC/21oC)

SHGSCZ_2018_v19n11_326_f0011.png 이미지

Fig. 11. Pressure drops of the samples

References

  1. H. K. Kim, T. I. Ohm, H. K. Yoon, K. Y. Bang, "Numerical Study on the Humidification Efficiency on Humidifying Module Shapes of the Evaporative Humidifier", Korean Journal of Air-Conditioning and Refrigeration Engineering, Vol.26, No.1, pp.42-47, 2014. DOI: https://dx.doi.org/10.6110/KJACR.2014.26.1.042
  2. M. Barzegar, M. Layeghi, G. Ebrahimi, Y. Hamseh, M. Khorasani, "Experimental evaluation of the performances of cellulosic pads made out of Kraft and NSSC corrugated papers as evaporative media", Energy Conversion and Management, Vol.54, No.1, pp.24-29, 2012. DOI: https://dx.doi.org/10.1016/j.enconman.2011.09.016
  3. J. K. Jain, D. A. Hindoliya, "Experimental performance of new evaporative cooling pad materials", Sustainable Cities and Society, Vol.1, No.4, pp.252-256, 2011. DOI: https://dx.doi.org/10.1016/j.scs.2011.07.005
  4. C. M. Liao, S. Singh, T. S. Wang, "Characterizing the performance of alternative evaporative cooling pad media in thermal environmental control applications", Journal of Environmental Science and Health, Part A, Vol.33, No.7, pp.1391-1417, 1998. DOI: https://dx.doi.org/10.1080/10934529809376795
  5. C. M. Liao, K. H. Chiu, "Wind tunnel modeling the system performance of alternative evaporative cooling pads in Taiwan region", Building and Environment, Vol.37, No.2, pp.177-187, 2002. DOI: https://dx.doi.org/10.1016/S0360-1323(00)00098-6
  6. https://www.munters.com/ko/munters/products/coolers-humidifiers/glasdek/
  7. N. H. Kim, "A Performance Analysis and Experiments on Plastic Film/Paper Humidifying Elements Consisting of Horizontal Air Channels and Vertical Water Channels", Trans. Korean Soc. Mech. Eng. B., Vol.40, No.1, pp.55-63, 2016. DOI: https://dx.doi.org/10.3795/KSME-B.2016.40.1.055
  8. A. Franco, D. L. Valera, A. Pena, A. M. Perez, "Aerodynamic analysis and CFD simulation of several cellulose evaporative cooling pads used in Mediterranean greenhouses", Computers and Electronics in Agriculture, Vol.76, No.2, pp.218-230, 2011. DOI: https://dx.doi.org/10.1016/j.compag.2011.01.019
  9. A. Malli, H. R. Seyf, M. Layeghi, S. Sharifian, H. Behravesh, "Investigating the performance of cellulosic evaporative cooling pads", Energy Conversion and Management, Vol.52, No.7, pp.2598-2603, 2011. DOI: https://dx.doi.org/10.1016/j.enconman.2010.12.015
  10. ASHRAE Standard 41.1, Standard method for temperature measurement, ASHRAE, 1986.
  11. ASHRAE Standard 41.2, Standard method for laboratory air-flow measurement, ASHRAE, 1986.
  12. ASHRAE Standard 41.5, Standard measurement guide, engineering analysis of experimental data, ASHRAE, 1986.