DOI QR코드

DOI QR Code

Development of Low-Cost, Double-Speed, High-Precision Operation Control System for Range Extender Engine

레인지 익스텐더 전기자동차 엔진용 저가형 2단속도 고정밀 운전제어시스템 개발

  • Received : 2018.08.23
  • Accepted : 2018.11.02
  • Published : 2018.11.30

Abstract

The range extender vehicle runs on a mechanism that allows the small power generation engine to start in the most efficient specific operating range to charge the battery and extend the mileage. In this study, we developed a step motor type intake air supply system that replaces existing throttle body system to develop a simple low cost control logic system. The system was applied to the existing base engine, and in order to improve the performance by increasing the amount of intake air, the effect of changing the length of the intake and exhaust manifold was experimentally examined. As a result, the Type B intake air control actuator operated by one step motor showed higher performance than the Type A in all the operation region, but the performance was lower than that of the base engine due to the increase of flow resistance. To improve this, it was confirmed that the engine performance was improved at both speeds of 2200rpm and 4300rpm when the 140mm adapter was installed in the intake manifold and when the newly designed 70mm exhaust manifold was applied. Through this process, high - precision operation control was realized by connecting the generator load to the optimized engine for the range extender electric vehicle. Experimental results showed that the speed change rate was within ${\pm}2.5%$ at 2200rpm in 1st stage and 4300rpm in 2nd stage and the speed follow-up result of 610 rpm/s was obtained when the speed was increased from 2200rpm to 4300rpm.

레인지 익스텐더 전기자동차는 소형의 발전용 엔진이 가장 효율이 좋은 특정 운전영역에서 기동하여 배터리를 충전시키며 주행거리를 연장하는 메커니즘으로 주행한다. 본 연구에서는 저가이면서 제어 로직이 간단한 시스템을 개발하기 위하여 기존 쓰로틀바디시스템을 대체하는 스텝모터방식 흡입공기량 공급시스템을 개발하여 기존 base 엔진에 적용하고, 흡입공기량 증대를 통한 성능 개선을 위해 흡 배기다기관의 길이 변경 효과를 실험적으로 살펴보았다. 실험결과, 하나의 스텝모터로 작동하는 Type B의 흡입공기량조절장치가 Type A보다 전 운전영역에서 성능이 높았으나 유동저항의 증가로 base 엔진보다는 성능이 낮았다. 이를 개선하기 위해 흡기매니폴드에 140mm 어댑터를 장착한 경우와 새로 설계된 70mm 길이의 배기 매니폴드를 적용한 경우 2200rpm과 4300rpm 두 속도조건에서 엔진성능이 향상됨을 확인할 수 있었다. 최적 설계된 엔진을 대상으로 레인지 익스텐더 전기자동차에 적용 가능하도록 발전기 부하를 연결하여 2단 속도로 고정밀 운전제어를 구현하였으며 그 결과, 1단 2200rpm과 2단 4300rpm 운전조건에서 ${\pm}2.5%$ 이내의 속도변화율을 나타내었고, 1단 속도에서 2단 속도로 상승 시 610rpm/s의 목표속도 추종성 결과를 얻었다.

Keywords

SHGSCZ_2018_v19n11_529_f0001.png 이미지

Fig. 1. Test engine with generator connected

SHGSCZ_2018_v19n11_529_f0002.png 이미지

Fig. 3. Intake air flow rate according to ISCA steps

SHGSCZ_2018_v19n11_529_f0003.png 이미지

Fig. 4. Comparison of full load engine performance for various intake air control actuators

SHGSCZ_2018_v19n11_529_f0004.png 이미지

Fig. 5. Adapter between intake manifold and cylinder head (a) 70mm (b) 140mm

SHGSCZ_2018_v19n11_529_f0005.png 이미지

Fig. 6. Comparison of full load engine performance for applying intake manifold adapter

SHGSCZ_2018_v19n11_529_f0006.png 이미지

Fig. 7. New design of exhaust manifold with different length (a) 70mm (b) 200mm

SHGSCZ_2018_v19n11_529_f0007.png 이미지

Fig. 8. Comparison of full load engine performance for applying exhaust manifold with different length

SHGSCZ_2018_v19n11_529_f0008.png 이미지

Fig. 9. Engine speed stability at 2200rpm in 1st stage

SHGSCZ_2018_v19n11_529_f0009.png 이미지

Fig. 10. Engine speed stability at 4300rpm in 2nd stage

SHGSCZ_2018_v19n11_529_f0010.png 이미지

Fig. 11. Target speed follow-up from 2200rpm in 1st stage to 4300rpm in 2nd stage

SHGSCZ_2018_v19n11_529_f0011.png 이미지

Fig. 2. Two types of Intake air control actuators

Table 1. Specification of test engine

SHGSCZ_2018_v19n11_529_t0001.png 이미지

References

  1. M. Anwar, M. Hayes, A. Tata, M, Teimorzadeh and T. Achatz, "Power Dense and Robust Traction Power Inverter for the Second-Generation Chevrolet Volt Extended-Range EV", SAE Technical Paper 2015-01-1201, 2015. DOI: https://dx.doi.org/10.4271/2015-01-1201
  2. A. Agarwal, A. Lewis, S. Akenhurst, C. Brace, Y. Gandhi and G. Kirkpatrick, "Development of a Low Cost Production Automotive Engine for Range Extender Application for Electric Vehicles", SAE Technical Paper 2016-01-1055, 2016. DOI: https://dx.doi.org/10.4271/2016-01-1055
  3. M. Bassett, J. Hall, G. Kennedy, T. Cains, J. Powell and M. Warth, "The Development of a Range Extender Electric Vehicle Demonstrator", SAE Technical Paper 2013-01-1469, 2013. DOI: https://dx.doi.org/10.4271/2013-01-1469
  4. M. Atzwanger, C. Hubmann, W. Schoeffmann, B. Kometter and H. Friedl, "Two-Cylinder Gasoline Engine Concept for Highly Integrated Range Extender and Hybrid Powertrain Applications", SAE Technical Paper 2010-32-0130, 2010. DOI: https://dx.doi.org/10.4271/2010-32-0130
  5. H. Shimamura, A. Kasai and T. Arai, "Engine Speed Control with a Choke Valve based on the Adaptive Control Approach-Mechanism to Drive both the Throttle Valve and the Choke Valve with a Single Motor", SAE Technical Paper 2010-32-0116, 2010. DOI: https://dx.doi.org/10.4271/2010-32-0116