DOI QR코드

DOI QR Code

The Mechanical Characteristics of the PLLA and PCL Sutures According to the Temperature

온도에 따른 PLLA 및 PCL 봉합사의 기계적 특성

  • Xie, Yuying (Dept of Environmental and Bio-chemical Engineering., Sunmoon University) ;
  • Kang, Soon-Kook (Dept of Environmental and Bio-chemical Engineering., Sunmoon University)
  • 시에위잉 (선문대학교 환경생명화학공학과) ;
  • 강순국 (선문대학교 환경생명화학공학과)
  • Received : 2018.10.08
  • Accepted : 2018.12.07
  • Published : 2018.12.31

Abstract

Sutures are used not only for wound closure but also for oriental medicine field, beauty and even for plastic surgery. Especially, it is popular in the field of cosmetic surgery. In this paper, we produced sutures using PCL and PLLA with better strength than PDO sutures, which was widely used in the past. To learn about the mechanical characteristics of the PCL and PLLA sutures, the contraction change, tensile strength, and elongation were measured. And SEM was also analyzed for diameter and surface. The contraction change Ratio of sutures are stabilized after a certain period of time regardless of temperature. Also, it can be seen that the higher the temperature, the higher the contraction increase rate. And the rate change of mechanical properties is different according to the temperature before and after the glass temperature. Also the higher the temperature, the faster the molecular motion and the lower the tensile strength. The diameter of the PLLA and PCL sutures is opposite to the contraction change ratio. And it is considered that the sterilization temperature of PLLA sutures is best to set at $45^{\circ}C$ and the sterilization temperature of PCL sutures is best to set at $35^{\circ}C$.

봉합사는 단순한 접합용로 뿐만 아니라 한방, 미용 심지어 성형 분야에도 사용하고 있다. 특히 미용 성형 분야에 인기를 끌고 있다. 본 논문에서는 기존에 많이 사용했던 PDO 봉합사보다 강도 더 좋은 PCL 및 PLLA 봉합사를 제조하였다. 이들의 수축 특성을 알기 위해 PCL 및 PLLA 봉합사의 수축률, 인장강도 및 연신율을 측정하였다. 또한 직경 및 표면을 보기 위해 SEM을 분석하였다. 수축률은 온도 상관없이 일정기간 지나면 안정화 되다. 또한 온도 높을수록 수축 증가율이 높아진다는 것을 확인할 수 있다. 그리고 유리온도의 전후 온도에 따른 기계적 특성의 변화율이 다르게 나타나는 것을 확인할 수 있다. 또한 온도 높을수록 분자운동 더 빨라지고 인장강도 낮아진다. PCL 및 PLLA 봉합사의 직경은 봉합사의 수축률과 상반관계로 나타나는 것을 확인할 수 있다. 그리고 PLLA 봉합사의 멸균온도는 $45^{\circ}C$로 설정하고 PCL 봉합사의 멸균온도는 $35^{\circ}C$로 설정하는 것이 가장 적절하다고 사료된다.

Keywords

SHGSCZ_2018_v19n12_931_f0001.png 이미지

Fig. 1. The Contraction change ratio of PCL sutures at 35 °C, 45 °C and 55 °C.

SHGSCZ_2018_v19n12_931_f0002.png 이미지

Fig. 2. The Contraction change ratio of PLLA sutures at 45 °C, 60 °C, 80 °C and 100 °C.

SHGSCZ_2018_v19n12_931_f0003.png 이미지

Fig. 3. The Contraction change ratio of PCL and PLLA sutures at 45 °C.

SHGSCZ_2018_v19n12_931_f0004.png 이미지

Fig. 4. The tensile strength of PCL sutures at 35 °C, 45 °C and 55 °C.

SHGSCZ_2018_v19n12_931_f0005.png 이미지

Fig. 5. The tensile strength of PLLA sutures at 45 °C, 60 °C and 100 °C.

SHGSCZ_2018_v19n12_931_f0006.png 이미지

Fig. 6. The Elongation Ratio of PCL sutures at 35°C, 45°C and 55°C.

SHGSCZ_2018_v19n12_931_f0007.png 이미지

Fig. 7. The Elongation Ratio of PLLA sutures at 45 °C, 60 °C, 80 °C and 100 °C.

SHGSCZ_2018_v19n12_931_f0008.png 이미지

Fig. 8. The SEM image of PCL and PLLA sutures at 45 °C.

References

  1. S. Bhat and A. Kumar. Biomaterials and bioengineering tomorrow's healthcare. Biomatter. 3(3): e24717, Jul 1 2013. https://doi.org/10.4161/biom.24717
  2. G. Joseph Parell, MD; Gary D. Becker, MD, Comparison of Absorbable With Nonabsorbable Sutures in Closure of Facial Skin Wounds, Arch Facial Plast Surg. 5(6):488-490, 2003; https://doi.org/10.1001/archfaci.5.6.488
  3. C. S. Yoon, D. S. Ji, Preparation of PLA/PEG Block copolymer via melt blend, Textile Science and Engineering Vol. 43, No.5, 2006.
  4. H. J. Cho, D. J. Chung, J. H. An, Poly(D, L-lactide-ran-${\varepsilon}$-caprolactone)-poly(ethylene glycol)- poly(D, L-lactide-ran-${\varepsilon}$-caprolactone) as parenteral drug-delivery systems, J Biomaterials, 25, 3733-3742, 2004. https://doi.org/10.1016/j.biomaterials.2003.09.106
  5. H. Tsuji, A. Mizuno, Y. Ikada, Properties and morphology of poly(L-lactide). iii. Effects of initial crystallinity on long‐term in vitro hydrolysis of high molecular weight poly(L‐lactide) film in phosphatebuffered solution, Journal of Applied Polymer Science,Volume77, Issue7, 2000.
  6. Y. Y. Xie, J. S. Park, S. K. Kang, Studies on the effect of molecular weight on the degradation rate of biodegradable polymer membrane, Advanced Science and Technology Letters. Vol.120, pp. 390-394 (GST 2015).
  7. L. S. Nair, Cato T. Laurencin. Biodegradable polymers as biomaterials. Prog. Polym. Sci. 32 762-798, 2007. https://doi.org/10.1016/j.progpolymsci.2007.05.017
  8. Y. Y. Xie, J. S. Park, S. K. Kang, Study on the degradation rate and pH change of PLGA membrane with a biodegradation. Journal of Korea Academia-Industrial cooperation Society Vol.16, No. 9. pp. 6403-6410, 2015. https://doi.org/10.5762/KAIS.2015.16.9.6403
  9. So-i Lee, J. S. Park, M. K. Park, J. G. Ku, Mechanical properties of the in vitro degradation test of Poly(L-lactic acid)(PLLA) suture and Polydioxanone(PDO), Korea Academia-Industrial cooperation Society(2015). From: http://insight.dbpia.co.kr/article/related.do?nodeId=NODE07217811
  10. S. H. Kim, S. H. Kim, Biofunctional biodegradable polymers, Polymer Science and Technology Vol. 18, No. 5, October 2007.
  11. T. K Dash, V. B Konkimalla, Poly-${\epsilon}$-caprolactone based formulations for drug delivery and tissue engineering: A review, Journal of Controlled Release 158 (1), 15-33, 2012. https://doi.org/10.1016/j.jconrel.2011.09.064
  12. S. A. Park, B. Lee, Y. E. Kim, J. E. Kim, I. K. Kwon, J. H. Lee, W. D. Kim, H. K. Kim, M. E. Kim, J. S. Lee, Effect of sodium hydroxide treatment on scaffold by solid freeform fabrication, Polymer(Korea), Vol. 38, No. 6, pp. 815-819, 2014
  13. J. M. Willams, A. Adewunmi, R. M. Schck, C. I. Flanagan, P. H. Krebsbach, S. E. Feinberg, S. E. Feinberg, S. J. Hollister, and S. Das, Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering.. Biomaterials, 26, 4817, 2005. https://doi.org/10.1016/j.biomaterials.2004.11.057
  14. P. Makela, T. Pohjonen, P. Tormala, T. Waris, N. Ashammakhi, Strength retention properties of self-reinforced poly L-lactide(SR-PLLA) sutures compared with polyglyconste($Maxon^R$) and polydioxanone(PDS) sutures. An in vitro study, ELSEVIER Biomaterials 23 2587-2592, 2002. https://doi.org/10.1016/S0142-9612(01)00396-9
  15. J. M. Seitz, M. Durisin, J. Goldman, J. W. Drelich, Recent Advances in Biodegradable Metals for Medical Sutures: A Critical Review. Advanced Healthcare materials. Volume 4, Issue 13, 2015.
  16. G. S. Ahn, G. B. Han, S. H. Oh, J. W. Park and C. W. Kim. Evaluation of Anastomotic Strength and in-vitro degradability with microvascular anastomosis coupler based on injection molding condition made by biodegradable polycaprolactone(PCL). Trans. Korean Soc. Mech. Eng. C, Vol. 1, No. 2, pp. 167-177, 2013.
  17. W. B. Qin, A mechanical property study of corn polylactic acid fiber under different temperature status. Shanghai Textile Science & Technology, Vol. 34 No. 12, 2006.