DOI QR코드

DOI QR Code

Effects of Temperature on the Rheology of Lecithin/CaCl2 Organogels

Lecithin/CaCl2 유기젤의 온도 영향에 대한 유변학적 연구

  • Jung, Yeon-Geon (Department of Chemical Engineering, The Kumoh National Institute of Technology) ;
  • Lee, Hee-Young (Department of Chemical Engineering, The Kumoh National Institute of Technology)
  • 정연건 (금오공과대학교 화학공학과) ;
  • 이희영 (금오공과대학교 화학공학과)
  • Received : 2018.02.23
  • Accepted : 2018.03.09
  • Published : 2018.04.10

Abstract

Lecithin, a zwitterionic phospholipid, forms spherical reverse micelles in organic solvents such as decane. The addition of multivalent ions like calcium chloride to lecithin organosols induces the transformation of organosols into organogels. A variety of applications of such organogels were found in gelation of fuels, food processing and drug delivery. Here, we investigated the effect of temperature on their rheological properties. In particular, the organogels showed a distinct melting temperature (${\sim}95^{\circ}C$) and their elastic properties decreased with increasing temperature. This is maybe due to the fact that the electrostatic interaction between lecithin and calcium chloride could be weaken with increasing temperature.

쌍성이온 인지질의 한 종류인 lecithin은 decane과 같은 유기용매상에서 구 모양의 역마이셀을 만든다. 이러한 lecithin을 포함하고 있는 유기졸에 염화칼슘과 같은 다원자가의 이온을 첨가하면 유기젤이 형성된다. 이러한 유기젤은 연료의 젤화, 음식 준비, 약물전달 등에 다양하게 활용될 수 있다. 본 연구에서는 이러한 젤의 온도 영향을 유변학적 관점에서 조사하였다. 유기젤의 유변학 연구를 통하여 유기젤의 녹는점(${\sim}95^{\circ}C$)과 온도가 증가하면서 젤의 고체와 같은 성질이 줄어듦을 확인하였다. 온도가 증가함에 따라서 유기젤의 고체와 같은 성질이 줄어드는 이유는 lecithin과 염화칼슘 사이의 정전기적 상호작용이 약해지기 때문으로 판단된다.

Keywords

References

  1. J. N. Israelachvili, Intermolecular and Surface Forces, Academic Press, San Diego, CA, USA (1991).
  2. D. F. Evans and H. Wennerstrom, The Colloidal Domain: Where Physics, Chemistry, Biology, and Technology Meet, Wiley-VCH, New York, NY, USA (2001).
  3. Z. D. Knezevic, S. S. Siler-Marinkovic, and L. V. Mojovic, Kinetics of lipase-catalyzed hydrolysis of palm oil in lecithin/izooctane reversed micelles, Appl. Microbiol. Biotechnol., 49, 267-271 (1998). https://doi.org/10.1007/s002530051167
  4. D. Madamwar and A. Thakar, Entrapment of enzyme in water-restricted microenvironment for enzyme-mediated catalysis under microemulsion-based organogels, Appl. Biochem. Biotechnol., 118, 361-369 (2004). https://doi.org/10.1385/ABAB:118:1-3:361
  5. W. D. Van Horn, A. K. Simorellis, and P. F. Flynn, Low-temperature studies of encapsulated proteins, J. Am. Chem. Soc., 127, 13553-13560 (2005). https://doi.org/10.1021/ja052805i
  6. F. Dreher, P. Walde, P. Walther, and E. Wehrli, Interaction of a lecithin microemulsion gel with human stratum corneum and its effect on transdermal transport, J. Control. Release, 45, 131-140 (1997). https://doi.org/10.1016/S0168-3659(96)01559-3
  7. M. Kreilgaard, Influence of microemulsions on cutaneous drug delivery, Adv. Drug. Deliv. Rev., 54, S77-S98 (2002). https://doi.org/10.1016/S0169-409X(02)00116-3
  8. R. Kumar and O. P. Katare, Lecithin organogels as a potential phospholipid-structured system for topical drug delivery: A review, AAPS PharmSciTech, 6, E298-310 (2005). https://doi.org/10.1208/pt060240
  9. C. A. Dreiss, Wormlike micelles: Where do we stand? Recent developments, linear rheology and scattering techniques, Soft Matter, 3, 956-970 (2007). https://doi.org/10.1039/b705775j
  10. S. H. Tung, Y. E. Huang, and S. R. Raghavan, A new reverse wormlike micellar system: Mixtures of bile salt and lecithin in organic liquids, J. Am. Chem. Soc., 128, 5751-5756 (2006). https://doi.org/10.1021/ja0583766
  11. S. H. Tung, Y. E. Huang, and S. R. Raghavan, Contrasting effects of temperature on the rheology of normal and reverse wormlike micelles, Langmuir, 23, 372-376 (2007). https://doi.org/10.1021/la063037r
  12. H. Y. Lee, K. K. Diehn, S. W. Ko, S. H. Tung, and S. R. Raghavan, Can simple salts influence self-assembly in oil? Multivalent cations as efficient gelators of lecithin organosols, Langmuir, 26, 13831-13838 (2010). https://doi.org/10.1021/la1019108
  13. S. T. Lin, C. S. Lin, Y. Y. Chang, A. E. Whitten, A. Sokolova, C. M. Wu, V. A. Ivanov, A. R. Khokhlov, and S. H. Tung, Effects of alkali cations and halide anions on the self-assembly of phosphatidylcholine in oils, Langmuir, 32, 12166-12174 (2016). https://doi.org/10.1021/acs.langmuir.6b03449
  14. Y. K. Lee and H. Y. Lee, Gelation of commercially available mineral oils by lecithin and $CaCl_2$ mixture, Colloids Surf. A, 538, 661-667 (2018). https://doi.org/10.1016/j.colsurfa.2017.11.058
  15. H. Y. Lee, K. K. Diehn, K. Sun, T. Chen, and S. R. Raghavan, Reversible photorheological fluids based on spiropyran-doped reverse micelles, J. Am. Chem. Soc., 133, 8461-8463 (2011). https://doi.org/10.1021/ja202412z
  16. S. H. Tung, Y. E. Huang, and S. R. Raghavan, Self-assembled organogels obtained by adding minute concentrations of a bile salt to AOT reverse micelles, Soft Matter, 4, 1086-1093 (2008). https://doi.org/10.1039/b718145k
  17. R. Kumar, A. M. Ketner, and S. R. Raghavan, Nonaqueous photorheological fluids based on light-responsive reverse wormlike micelles, Langmuir, 26, 5405-5411 (2010). https://doi.org/10.1021/la903834q
  18. D. M. Willard, R. E. Riter, and N. E. Levinger, Dynamics of polar solvation in lecithin/water/cyclohexane reverse micelles, J. Am. Chem. Soc., 120, 4151-4160 (1998). https://doi.org/10.1021/ja980086k
  19. Y. A. Shchipunov, Lecithin organogel - A micellar system with unique properties, Colloids Surf. A, 183, 541-554 (2001).
  20. S. R. Raghavan, Distinct character of surfactant gels: A smooth progression from micelles to fibrillar networks, Langmuir, 25, 8382-8385 (2009). https://doi.org/10.1021/la901513w