DOI QR코드

DOI QR Code

Three-dimensional finite element analysis according to the insertion depth of an immediately loaded implant in the anterior maxilla

상악 전치부 즉시하중 임플란트의 식립 깊이에 따른 삼차원 유한요소 분석

  • Park, Cheol-Woo (Department of Prosthodontics, School of Dentistry, Seoul National University) ;
  • Kim, Sung-Hun (Department of Prosthodontics, School of Dentistry, Seoul National University) ;
  • Yeo, In-Sung (Department of Prosthodontics, School of Dentistry, Seoul National University) ;
  • Yoon, Hyung-In (Department of Prosthodontics, School of Dentistry, Seoul National University) ;
  • Han, Jung-Suk (Department of Prosthodontics, School of Dentistry, Seoul National University)
  • 박철우 (서울대학교 치의학대학원 치과보철학교실) ;
  • 김성훈 (서울대학교 치의학대학원 치과보철학교실) ;
  • 여인성 (서울대학교 치의학대학원 치과보철학교실) ;
  • 윤형인 (서울대학교 치의학대학원 치과보철학교실) ;
  • 한중석 (서울대학교 치의학대학원 치과보철학교실)
  • Received : 2017.12.04
  • Accepted : 2018.02.23
  • Published : 2018.04.30

Abstract

Purpose: The purpose of this study was to investigate the effects of the insertion depth of an immediately loaded implant on the stress distribution of the surrounding bone and the micromovement of the implant using the three-dimensional finite element analysis. Materials and methods: A total of five bone models were constructed such that the implant platform was positioned at the levels of 0.00 mm, 0.25 mm, 0.50 mm, 0.75 mm, and 1.00 mm depth from the crest of the cortical bone. A frictional coefficient of 0.3 and the insertion torque of 35 Ncm were simulated on the interface between the implant and surrounding bone. A static load of 178 N was applied to the provisional prosthesis with a vertical load in the axial direction and an oblique load at $30^{\circ}$ with respect to the central axis of the implant, then a finite element analysis was performed. Results: The implant insertion depth significantly affected the stress distribution on the surrounding bone. The largest micromovement value of the implant was $39.34{\mu}m$. The oblique load contributed significantly to the stress distribution and micromovement in comparison to the vertical load. Conclusion: Increasing the implant insertion depth was advantageous in dispersing the concentrated stress in the cortical bone and did not significantly affect the micromovement associated with early osseointegration failure.

목적: 삼차원 유한요소분석을 이용하여 상악 전치부 즉시하중 임플란트의 식립 깊이가 주위 골의 응력 분포와 임플란트의 미세움직임에 미치는 영향을 알아보고자 하였다. 재료 및 방법: 임플란트 상단이 치조정 피질골 상연을 기준으로 0.00 mm, 0.25 mm, 0.50 mm, 0.75 mm, 1.00 mm 깊게 위치되도록 총 5개 골모형을 제작하였다. 고정체와 주위 골 계면에 마찰접촉과 35 Ncm의 식립 토크를 재현하였다. 임시 보철물에 178 N의 정하중을 고정체의 중심축에 대하여 축방향의 수직하중과 $30^{\circ}$의 경사하중으로 가하고 유한요소 분석을 시행하였다. 결과: 임플란트의 식립 깊이가 주위 골의 응력 분포에 상당한 영향을 주었다. 임플란트의 가장 큰 미세움직임이 $39.34{\mu}m$로 나타났다. 경사하중이 수직하중에 비해서 응력 분포와 미세움직임의 변화에 크게 기여하였다. 결론: 임플란트 식립 깊이의 증가는 피질골에 집중된 응력을 분산시키는데 유리하였으며, 초기 골유착 실패와 관련이 있는 미세움직임에는 크게 영향을 주지 않았다.

Keywords

References

  1. Rodriguez AM, Rosenstiel SF. Esthetic considerations related to bone and soft tissue maintenance and development around dental implants: report of the Committee on Research in Fixed Prosthodontics of the American Academy of Fixed Prosthodontics. J Prosthet Dent 2012;108:259-67. https://doi.org/10.1016/S0022-3913(12)60174-7
  2. Misch CE, Wang HL, Misch CM, Sharawy M, Lemons J, Judy KW. Rationale for the application of immediate load in implant dentistry: Part I. Implant Dent 2004;13:207-17. https://doi.org/10.1097/01.id.0000140461.25451.31
  3. Cooper LF, De Kok IJ, Rojas-Vizcaya F, Pungpapong P, Chang SH. The immediate loading of dental implants. Compend Contin Educ Dent 2007;28:216-25; quiz 226.
  4. Mangano FG, Mastrangelo P, Luongo F, Blay A, Tunchel S, Mangano C. Aesthetic outcome of immediately restored single implants placed in extraction sockets and healed sites of the anterior maxilla: a retrospective study on 103 patients with 3 years of follow-up. Clin Oral Implants Res 2017;28:272-82.
  5. den Hartog L, Raghoebar GM, Stellingsma K, Vissink A, Meijer HJ. Immediate loading of anterior single-tooth implants placed in healed sites: Five-year results of a randomized clinical trial. Int J Prosthodont 2016;29:584-91.
  6. den Hartog L, Raghoebar GM, Stellingsma K, Vissink A, Meijer HJ. Immediate non-occlusal loading of single implants in the aesthetic zone: a randomized clinical trial. J Clin Periodontol 2011;38:186-94. https://doi.org/10.1111/j.1600-051X.2010.01650.x
  7. Cooper LF, Reside GJ, Raes F, Garriga JS, Tarrida LG, Wiltfang J, Kern M, De Bruyn H. Immediate provisionalization of dental implants placed in healed alveolar ridges and extraction sockets: a 5-year prospective evaluation. Int J Oral Maxillofac Implants 2014;29:709-17. https://doi.org/10.11607/jomi.3617
  8. Ding X, Zhu XH, Liao SH, Zhang XH, Chen H. Implant-bone interface stress distribution in immediately loaded implants of different diameters: a three-dimensional finite element analysis. J Prosthodont 2009;18:393-402. https://doi.org/10.1111/j.1532-849X.2009.00453.x
  9. Kao HC, Gung YW, Chung TF, Hsu ML. The influence of abutment angulation on micromotion level for immediately loaded dental implants: a 3-D finite element analysis. Int J Oral Maxillofac Implants 2008;23:623-30.
  10. Javed F, Romanos GE. The role of primary stability for successful immediate loading of dental implants. A literature review. J Dent 2010;38:612-20. https://doi.org/10.1016/j.jdent.2010.05.013
  11. Cassetta M, Driver A, Brandetti G, Calasso S. Peri-implant bone loss around platform-switched Morse taper connection implants: a prospective 60-month follow-up study. Int J Oral Maxillofac Surg 2016;45:1577-85. https://doi.org/10.1016/j.ijom.2016.09.009
  12. Chu CM, Hsu JT, Fuh LJ, Huang HL. Biomechanical evaluation of subcrestal placement of dental implants: in vitro and numerical analyses. J Periodontol 2011;82:302-10. https://doi.org/10.1902/jop.2010.100040
  13. Chou HY, Muftu S, Bozkaya D. Combined effects of implant insertion depth and alveolar bone quality on periimplant bone strain induced by a wide-diameter, short implant and a narrow-diameter, long implant. J Prosthet Dent 2010;104:293-300. https://doi.org/10.1016/S0022-3913(10)60142-4
  14. Leon J, Carrascosa A, Rodriguez X, Ruiz-Magaz V, Pascual A, Nart J. Finite element analysis relative to the crestal position of a 3.0-mm-diameter implant. Int J Periodontics Restorative Dent 2014;34:381-7. https://doi.org/10.11607/prd.1960
  15. Huang CC, Lan TH, Lee HE, Wang CH. The biomechanical analysis of relative position between implant and alveolar bone: finite element method. J Periodontol 2011;82:489-96. https://doi.org/10.1902/jop.2010.100388
  16. Rismanchian M, Askari N, Shafiei S. The effect of placement depth of platform-switched implants on periimplant cortical bone stress: a 3-dimensional finite element analysis. Implant Dent 2013;22:165-9. https://doi.org/10.1097/ID.0b013e31827f34d0
  17. Qian L, Todo M, Matsushita Y, Koyano K. Effects of implant diameter, insertion depth, and loading angle on stress/strain fields in implant/jawbone systems: finite element analysis. Int J Oral Maxillofac Implants 2009;24:877-86.
  18. Dos Santos MBF, Meloto GO, Bacchi A, Correr-Sobrinho L. Stress distribution in cylindrical and conical implants under rotational micromovement with different boundary conditions and bone properties: 3-D FEA. Comput Methods Biomech Biomed Engin 2017;20:893-900. https://doi.org/10.1080/10255842.2017.1309394
  19. Borie E, Orsi IA, Noritomi PY, Kemmoku DT. Three-Dimensional Finite Element Analysis of the Biomechanical Behaviors of Implants with Different Connections, Lengths, and Diameters Placed in the Maxillary Anterior Region. Int J Oral Maxillofac Implants 2016;31:101-10. https://doi.org/10.11607/jomi.4120
  20. Bal BT, Caglar A, Aydin C, Yilmaz H, Bankoglu M, Eser A. Finite element analysis of stress distribution with splinted and nonsplinted maxillary anterior fixed prostheses supported by zirconia or titanium implants. Int J Oral Maxillofac Implants 2013;28:e27-38. https://doi.org/10.11607/jomi.2442
  21. Lee JS, Cho IH, Kim YS, Heo SJ, Kwon HB, Lim YJ. Boneimplant interface with simulated insertion stress around an immediately loaded dental implant in the anterior maxilla: a three-dimensional finite element analysis. Int J Oral Maxillofac Implants 2012;27:295-302.
  22. Hsu ML, Chen FC, Kao HC, Cheng CK. Influence of offaxis loading of an anterior maxillary implant: a 3-dimensional finite element analysis. Int J Oral Maxillofac Implants 2007;22:301-9.
  23. Santiago Junior JF, Pellizzer EP, Verri FR, de Carvalho PS. Stress analysis in bone tissue around single implants with different diameters and veneering materials: a 3-D finite element study. Mater Sci Eng C Mater Biol Appl 2013;33:4700-14. https://doi.org/10.1016/j.msec.2013.07.027
  24. Verri FR, Santiago Junior JF, Almeida DA, Verri AC, Batista VE, Lemos CA, Noritomi PY, Pellizzer EP. Three-dimensional finite element analysis of anterior single implant-supported prostheses with different bone anchorages. ScientificWorld-Journal 2015;2015:321528.
  25. Tahmaseb A, De Clerck R, Aartman I, Wismeijer D. Digital protocol for reference-based guided surgery and immediate loading: a prospective clinical study. Int J Oral Maxillofac Implants 2012;27:1258-70.
  26. Attard NJ, Zarb GA. Immediate and early implant loading protocols: a literature review of clinical studies. J Prosthet Dent 2005;94:242-58. https://doi.org/10.1016/j.prosdent.2005.04.015
  27. Okumura N, Stegaroiu R, Kitamura E, Kurokawa K, Nomura S. Influence of maxillary cortical bone thickness, implant design and implant diameter on stress around implants: a three-dimensional finite element analysis. J Prosthodont Res 2010;54:133-42. https://doi.org/10.1016/j.jpor.2009.12.004
  28. Sugiura T, Yamamoto K, Horita S, Murakami K, Tsutsumi S, Kirita T. The effects of bone density and crestal cortical bone thickness on micromotion and peri-implant bone strain distribution in an immediately loaded implant: a nonlinear finite element analysis. J Periodontal Implant Sci 2016;46:152-65. https://doi.org/10.5051/jpis.2016.46.3.152
  29. Brunski JB. Avoid pitfalls of overloading and micromotion of intraosseous implants. Dent Implantol Update 1993;4:77-81.

Cited by

  1. 지대주 나사 풀림 방지를 위한 새로운 Lock Screw 시스템의 효과에 대한 유한요소해석적 연구 vol.35, pp.3, 2018, https://doi.org/10.14368/jdras.2019.35.3.132