DOI QR코드

DOI QR Code

Analysis of Soil CO2 efflux across three age classes of plantation Pinus koraiensis

임령이 다른 잣나무림에서의 토양 호흡 분석

  • Nam, Ki-Jung (Department of Biology Education, Gyeongsang National University, Institute of Agriculture & Life Science, Gyeongsang National University)
  • 남기정 (경상대학교 생물교육과.경상대학교 농업생명과학연구원)
  • Received : 2018.04.25
  • Accepted : 2018.05.01
  • Published : 2018.05.31

Abstract

The objective of this study was to examine effects of stand age on soil $CO_2$ efflux in plantation Pinus koraiensis, and to elucidate what extent plant (fine) root and soil microbial biomass contribute to the whole soil $CO_2$ efflux. In three age classes (20-yr-old. 40-yr-old, 70-yr-old) of plantation Pinus koraiensis, in-situ soil respiration, plant fine root biomass and soil microbial biomass were measured from April to November in 2004. Regardless of stand age, soil temperature and soil $CO_2$ efflux increased until July then slowly decreased. Soil respiration was higher in 70-yr-old stand than in 20- and 40-yr stands. Fine root biomass and soil microbial biomass was also higher in 70-yr-old stand. Root exclusion decreased soil respiration in 40-yr stand, but not in 70-yr stand. Soil microbial biomass was higher in 70-yr stand, but there was no monthly variation between July and November. The results suggest that soil respiration may increase as plant stand ages and microbial contribution could play more roles in older stands.

산림생태계에서 대기로의 토양의 이동은 토양 호흡이라는 과정을 통해 이루어진다. 본 연구에서는 임령이 다른 잣나무림을 대상으로 생육기 동안의 토양 호흡값과 토양 내 뿌리의 양, 미생물 개체군 생물량을 측정하여, 토양호흡량이 임령에 따라 어떻게 다르며, 뿌리와 미생물 개체군이 얼마나 기여할 것인지 알아보고자 하였다. 토양 온도와 토양 호흡은 임령과는 상관없이 유사한 패턴을 보여 7월까지는 증가하고 이후 감소하였다. 산림의 임령이 높을수록 토양 호흡량이 대체적으로 높았다. 토양 내 뿌리와 미생물을 조사한 결과, 임령이 높을수록 토양 내 존재하는 지름 2 mm 이하인 세근의 양이 많았으며 토양 미생물 개체군의 생물량이 많았다. 토양에서 뿌리를 제거하였을 때 70년 숲은 변화가 없었으나, 40년 숲에서는 토양 호흡값이 감소하였다. 본 연구결과로 볼 때, 산림의 연령이 높아질수록 토양 호흡량이 커지며, 식물 뿌리와 특히 토양 미생물이 토양 호흡값에 많은 기여를 하고 있는 것으로 생각해 볼 수 있다.

Keywords

References

  1. Boone, RD, Nadelhoffer, KJ, Canary, JD and Kaye, JP (1998). Roots exert a strong influence in the temperature sensitivity of soil respiration. Nature, 396(6711), pp. 570-572 [DOI: 10.1038/25119]
  2. Buchmann, N (2000). Biotic and abiotic factors controlling soil respiration rates in Picea abies stands. Soil biology and biochemistry, 32(11), pp. 1625-1635. [DOI: 10.1016/ s0038-0717(00)00077-8]
  3. Davis, JP, Haines, B, Colman, D and Hendrick, R (2004). Fine root dynamics along an elevational gradient in the southern Appalachian Mountains, USA. Forest Ecology and Management, 187(1). Pp. 19-33. [DOI: 10.1016/s0378- 1127(03)00226-3]
  4. Eugene, SE, Chen, J, Gustafson, JE and Ma, S (2003). Soil respiration at dominant patch types within a managed Northern Wisconsin landscape. Ecosystems, 6(6), pp. 595-607. [DOI:10.1007/pl00021505]
  5. Gough, CM and Seiler, JR (2004). The influence of environmental, soil carbon, root, and stand characteristics on soil CO2 efflux in loblolly pine(Pinus taeda L.) plantations located on the South Carolina Coastal Plain. Forest Ecology and Management, 191(1), pp. 353-363. [DOI: 10.1016/j.foreco.2004.01.011]
  6. Hanson, PJ, Edwards, NT, Garten, CT and Andrews, JA (2000). Separating root and soil microbial contribution to soil respiration: A review of methods and observations. Biogeochemistry, 48(1), pp. 115-146. [DOI:10.1023/A: 1006244819642]
  7. Iversen, CM (2010). Digging deeper: fine-root responses to rising atmospheric CO2 concentration in forested ecosystems. New Phyologist, 186(2), pp. 346-357. [DOI: 10.1111/j.1469-8137.2009.03122.x]
  8. Jeon, KW and Oh, KH (1994). Studies on characteristics of Pinus densiflora forest in Kangwon Province(III)- Studies on the tree-root form and distribution on the campus forest, Kangwon National University. J. of Forest Science, 10, 8-24.
  9. Kim, JS, Kong, SJ and Yang, KC (2014). A study on the soil CO2 efflux in Quercus acutissima stand at Mt. Bulam urban nature park. Korean J. of Environmental Ecology, 28(6), pp. 762-768. https://doi.org/10.13047/KJEE.2014.28.6.762
  10. Kolali, P, Purnpanen, J, Rannik, U, Ilvesniemi, H, Hari, P, Vogt, F, Vogt, DJ, Palmiotto, PA, Boon, P, O'Hara, J and Asbjotnsen, H (1996). Review of root dynamics in forest ecosystems grouped by climate. Plant and Soil, 187(2), pp. 159-219. [DOI: 10.1007/bf00017088]
  11. Kolari, P, Pumpanen, J, Rannik, U, Ilvesniemi, H, Hari, P, Berninger, F (2004). Carbon balance of different aged Scots pine forests in Southern Finland. Global change biology, 10(7), pp. 1106-1119. [DOI: 10.1111/j.1529-8817.2003. 00797.x].
  12. Kwak, YS and Kim, JH (1994). Spatial distribution of fine roots in Quercus mongolica and Quercus acutissima stands. The Korean J. of Ecology, 17(2), pp. 113-119.
  13. Lee, EH, Lim, JH, Lee, JS (2010). A review on soil respiration measurement and its application in Korea. Korean J. of Agricultural and Forest Meteorology, 12(4), pp. 264-276. [DOI: 10.5532/KJA FM .2010.12.4.264]
  14. Lee, KJ, Won, HY and Moon, HT (2012). Contribution of Root Respiration to Soil Respiration for Quercus acutissima Forest. Korean J. of Environmental Ecology, 26(5), pp. 780-786.
  15. Lee,YY and Moon, HT (2001). A study on soil respiration for Quercus acutissima Forest. Korean Journal of Ecology, 24(3), pp. 141-147.
  16. Pyo, JH, Kim, SU, Mun, HT (2003). A study on the carbon budget in Pinus koraiensis plantation. Journal of Ecology and Field Biology, 26, 129-134.
  17. Santruckova, H and Straskraba, M (1991). On the relationship between specific respiration activity and microbial biomass in soils. Soil biology and biochemistry, 23(6), pp. 525-532. [DOI: 10.1016/0038-0717(91)90109-w]
  18. Son, YH, Lee, G, Hong, JY (1994). Soil carbon dioxide evolution in three deciduous tree plantations. Korean J. of Soil Science and Fertilizer, 27(4), pp. 290-295.
  19. Son, YH and Kim, HW (1996). Soil respiration in Pinus rigida and Larnix leptolepis plantation. J. of Korean Forest Society, 85, 496-505.
  20. Valentini R, Matteucci, G, Dolman, AJ, Schulze, ED, Rebmann, C, Moors, EJ, Granier, A, Gross, P, Jensen, NO, Pilegaard, K, Lindroth, A, Grelle, A, Bernhofer, C, Grunwald, T, Aubinet, M, Ceulemans, R, Kowalski, AS, Vesala, T, Rannik, U, Berbibier, P, Loustau, D, Gudmundsson, J, Thorgeirsson, H, Ibrom, A, Morgenstern, K, Clement, R, Moncrieff, J, Montagnani, L, Minerbi, S and Jarvis, PG (2000). Respiration as the main determinant of carbon balance in European Forest. Nature, 404, pp. 861-865. [DOI: 10.1038/35009084]
  21. Vanninen, P and Makela, A (1999). Fine root biomass of Scots pine stands differing in age and soil fertility in southern Finland. Tree Physiology, 19(12), PP. 823-830. [DOI: 10.1093/treephys/19.12.823]
  22. Wang, B, Jiang, Y, Wei, X, Zhao, G, Guo, H and Bai, X (2011). Effects of forest type, stand age, altitude on soil respiration in subtropical forests of China. Scandinavian J. of Forest Research, 2011(26), pp. 40-47. [DOI: 10.1080/02827581. 2010.538082]
  23. Wei, W, Weile, C, Shaopeng, W (2010). Forest soil respiration and its heterotrophic and autotrophic components: Global patterns and responses to temperature and precipitation. Soil Biology and Biochemistry, 42(8), pp. 1236-1244. [DOI: 10.1016/j.soilbio.2010.04.013]
  24. Wiseman, PE and Seilor, JR (2004). Soil CO2 efflux across four age classes of plantation loblolly pine (Pinus taeda L.) on the Virginia Piedmont. Forest Ecology and Management, 192(2), pp. 297-311. [DOI: 10.1016/j.foreco.2004.01.017]
  25. Yuste, JC, Janssens, IA, Carrara, A, Meiresonne, L and Ceulemans, R (2004). The interactive effects of temperature and precipitation on soil respiration in a temperate maritime pine forest. Tree Physiology, 23(18), pp. 1263-1270. [DOI: 10.1093/treephys/23.18.1263]