DOI QR코드

DOI QR Code

Underwater Laser Communication Using LDPC Coded Method

LDPC 부호화 기술을 이용한 수중 레이저 통신

  • Lee, A-Hyun (Department of Radio Communication Engineering, Korea Maritime and Ocean University) ;
  • Baek, Chang-Uk (Department of Radio Communication Engineering, Korea Maritime and Ocean University) ;
  • Lee, Dong-Hun (Agency for Defense Development) ;
  • Jung, Ji-Won (Department of Radio Communication Engineering, Korea Maritime and Ocean University)
  • Received : 2018.04.20
  • Accepted : 2018.06.09
  • Published : 2018.06.30

Abstract

Recent studies have been received much attention on underwater laser communication, which is capable of high data rate. However, in underwater laser communication, distortions caused by absorption and scattering induced performance degradation. A typical way to improve performance is to apply channel coding technique. In the beginning of studies, simple methods such as RS and BCH coding techniques were applied. However, due to distance expansion and performance improvement, channel coding methods with low error probability such as LDPC coded method were applied. In this paper, we analyzed the performance according to the size of the code word N, the distance between the transceivers and the size of the M of the M-ary PPM modulation scheme. Simulation results show that parameter M of M-ary PPM is most effect on performance.

최근에는 대용량의 데이터를 전송할 수 있는 수중 레이저 통신에 관한 연구가 활발하다. 그러나 수중 레이저 통신은 수중에서 신호의 흡수, 산란 등으로 인한 왜곡에 의해 성능이 감소하며, 이를 보완하기 위하여 채널 부호화 방식을 적용한다. 초기에는 구현이 간단한 RS 부호 및 BCH 부호를 적용하였으나, 거리의 확장, 성능 향상, 해양 채널 환경의 열악성 때문에 강력한 채널 부호화 기술이 요구되었으며, 적용 가능한 부호화 기법들 중 LDPC 부호 방식의 연구가 주목받고 있다. 본 논문에서는 LDPC 부호화 방식과 M-ary PPM 변조 방식을 적용하여 시뮬레이션을 수행하였다. LDPC는 부호어의 크기 N과 M-ary PPM 변조 방식에서 M의 크기, 송수신간의 거리 등에 따라 성능 분석하였으며, 시뮬레이션 결과 M-ary PPM에서 M의 값이 성능을 좌우하는 요소임을 확인하였다.

Keywords

References

  1. H. Kaushal and G. Kaddoum, "Underwater Optical Wireless Communication", IEEE Access, vol. 4, pp. 1518-1547, April, 2016. https://doi.org/10.1109/ACCESS.2016.2552538
  2. D. B. Kilfoyle and A. B. Baggeroer, "The state of art in underwater acoustic telemetry", IEEE J. Oceanic Eng., vol. 25, no. 1, pp. 4-27, Jan, 2000. https://doi.org/10.1109/48.820733
  3. W. C. Cox, J. A. Simpson, C. P. Domizioli, J. F. Muth and B. L. Hughes, "An underwater optical communication system implementing Reed-Solomon channel coding", Proc. IEEE/MTS OCEANS, pp. 1-6, Sept, 2008.
  4. P. Swathi and S. Prince, "Designing issues in design of underwater wireless optical communication system", Proc. IEEE CISS, pp. 1440-1445, Mar, 2014.
  5. C. Berrou, A. Glavieux, and P. Thitimajshima, "Near Shannon Limit Error-Correcting Coding and Decoding : Turbo-Codes", in Proc. ICC9, May, 1993.
  6. Z. Cai, J. Hao, P. H. Tan, S. Sum and P. S. Chin "Efficient encoding of IEEE 802.11n LDPC codes", IEEE Electron. Lett., vol. 42, no. 25, pp. 1471-1472, Dec, 2006. https://doi.org/10.1049/el:20063126
  7. T. Richardson and R. Urbanke, "Efficient encoding of low-density parity check codes", IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 638-656, Feb, 2001. https://doi.org/10.1109/18.910579
  8. R. G. Gallager, "Low-density parity-check codes", IRE trans. inform. theory, vol. 8, no. 1, pp. 21-28, Jan, 1962. https://doi.org/10.1109/TIT.1962.1057683
  9. D. J. C. Mackay and R. M. Neal, "Near Shannon limit performance of low-density parity-check codes", Electron. Lett, vol.32, no.18, pp.1645-1646, Aug, 1996. https://doi.org/10.1049/el:19961141
  10. S. L. Che, P. Li and X. M. Wang, "Encoding and Decoding Scheme of LDPC Codes Based on Pulse Position Modulation", Electronics & Information Technology, vol. 30, no. 11, pp. 2630-2633, Nov, 2008.
  11. N. G. Jerlov, "Optical Oceanography", American Elsevier Pub. Co. Inc., 1968.