DOI QR코드

DOI QR Code

Evaporation Heat Transfer and Pressure Drop of R-404A at Low Flow Rates in 9.5 mm O.D. Smooth and Microfin Tubes

낮은 유량에서 외경 9.5 mm 평활관과 마이크로핀관 내 R-404A 증발 열전달 및 압력 손실

  • Kim, Nae-Hyun (Department of Mechanical Engineering, Incheon National University)
  • Received : 2018.03.02
  • Accepted : 2018.06.01
  • Published : 2018.06.30

Abstract

A significant amount of studies were performed on evaporation heat transfer and pressure drop in microfin tubes. Most studies, however, focused on the refrigerants used in air-conditioners or heat pumps, and very limited information is available on R-404A, which is used in low temperature refrigeration. In this study, the evaporation heat transfer and pressure drop characteristics of R-404A in a 9.5 mm O.D. microfin tube were investigated for the mass flux range from $80kg/m^2s$ and $200kg/m^2s$. A smooth tube of the same outer dimeter was also tested for comparison. The results showed that the heat transfer enhancement ratio of the microfin tube increased with increasing mass flux and the heat flux decreased. The relative contribution of the convective heat transfer and the heat flux on total heat transfer was attributed to the observed trend. The pressure drops of the microfin tube were slightly (maximum 28%) larger than those of the smooth tube. Existing correlations do not adequately predict the measured heat transfer coefficients of pressure drops, probably due to the test range of the present study, which is outside of the existing correlations.

그간 마이크로핀관 내 증발 열전달 및 압력 손실에 대하여 다수의 연구가 수행되었다. 하지만 대부분의 연구는 에어컨이나 히트 펌프에 사용되는 냉매에 대하여 수행되었고 R-404A에 대해서는 매우 제한된 연구만이 존재한다. R-404A는 근공비혼합냉매로 오존층 파괴와 관련하여 R-502를 대체하여 주로 저온 냉동, 냉장에 사용되고 있다. 본 연구에서는 낮은 질량유속 ($80kg/m^2s$에서 $200kg/m^2s$)에서 외경 9.5 mm 마이크로핀관 내 R-404A 증발 열전달 실험을 수행하였다. 또한 비교를 위해 외경 9.5 mm 평활관에 대한 실험도 수행하였다. 실험 결과 마이크로핀관의 전열촉진비는 질량유속이 증가할수록, 열유속이 감소할수록 증가하였다. 이러한 현상은 마이크로핀에 의한 대류 열전달의 증가와 열유속의 상대적 기여에 의한 것으로 판단된다. 또한 실험 범위에서 마이크로핀관의 마찰손실이 평활관의 마찰손실보다 다소 (최대 28%) 크게 나타났다. 기존 상관식은 저유량 R-404A 열전달계수 및 압력손실을 적절히 예측하지 못하는데 이는 본 실험 범위가 기존 상관식의 범위 밖에 있기 때문으로 판단된다.

Keywords

References

  1. R. L. Webb, N.-H. Kim, Principles of Enhanced Heat Transfer, 2nd ed., Taylor and Francis Pub., 2005.
  2. S. Laohalertdecha, A. S. Dalkilic, S. Wongwises, "A Review on Heat Transfer Performance and Pressure Drop Characteristics of Various Enhanced Tubes," Int. J. Air-Cond. Refrig., vol. 20, no. 4, 230003, 2012.
  3. J. R. Thome, "Boiling of New Refrigerants: A State-of-the-Art Review," Int. J. Refrig., vol. 19, no. 7, pp. 435-457, 1996. DOI: https://doi.org/10.1016/S0140-7007(96)00004-7
  4. K. Fujie, N. Itoh, H. Kimura, N. Nakayama, T. Yanugidi, Heat Transfer Pipe, US Patent 4044479, assigned to Hitachi Ltd., 1977.
  5. Y. Shinohara, M. Tobe, "Development of an Improved Thermofin Tube," Hitachi Cable Review, vol. 4, pp. 47-50, 1985.
  6. K. Yasuda, K. Ohizumi, M. Hori, O. Kawamata, "Development of Condensing Thermofin HEX-C Tube," Hitachi Cable Review, vol. 9, pp. 27-30, 1990.
  7. T. Tsuchida, K. Yasuda, M. Hori, T. Otani, "Internal Heat Transfer Characteristics and Workability of Narrow Thermofin Tubes," Hitachi Cable Review, vol. 12, pp. 97-100, 1993.
  8. L. J. Hamilton, M. A. Kedzierski, M. P. Kaul, "Horizontal Convective Boiling of Pure and Mixed Refrigerants Within a Micro-Fin Tube," J. Enhanced Heat Transfer, vol. 15, no. 3, pp. 211-226, 2008. DOI: https://doi.org/10.1615/JEnhHeatTransf.v15.i3.30
  9. Y. Kim, K. Seo, J. T. Chung, "Evaporation Heat Transfer Characteristics of R-410A in 7.0 and 9.52 mm Smooth/Microfin Tubes," Int. J. Refrig., vol. 25, pp. 716-730, 2002. DOI: https://doi.org/10.1016/S0140-7007(01)00070-6
  10. J. T. Kwon, S. K. Park, M. H. Kim, "Enhanced Effect of a Horizontal Microfin Tube for Condensation Heat Transfer with R-22 and R-410A," J. Enhanced Heat Transfer, Vol. 7, pp. 97-107, 2000. DOI: https://doi.org/10.1615/JEnhHeatTransf.v7.i2.30
  11. A. Padovan, D. Del Col, L. Rossetto, "Experimental Study on Flow Boiling of R134a and R410A in a Horizontal Microfin Tube at High Saturation Temperatures," Applied Thermal Engineering, vol. 31, pp. 2814-3826, 2001.
  12. H. Hu, G. Ding, K. Wang, "Heat Transfer Characteristics of R410A-Oil Mixture Flow Boiling Inside a 7mm Straight Microfin Tube, Int. J. Refrig., vol. 31, pp. 1081-1093, 2008. DOI: https://doi.org/10.1016/j.ijrefrig.2007.12.004
  13. S. M. Sami, D. E. Desjardins, "Prediction of Convective Boiling Characteristics of Alternative to R-502 Inside Air/Refrigerant Enhanced Surface Tubing," Applied Thermal Engineering, vol. 20, pp. 579-593, 2000. DOI: https://doi.org/10.1016/S1359-4311(99)00044-7
  14. N.-H. Kim, Personal Communication with Icetro Inc., 2017.
  15. N.-H. Kim, H.-W. Byun, J.-W. Lee, "Condensation Heat Transfer and Pressure Drop of R-410A in Three 7.0 mm Outer Diameter Microfin Tubes Having Different Inside Geometries," J. Enhanced Heat Transfer, vol. 20, no. 3, 235-250, 2013. DOI: https://doi.org/10.1615/JEnhHeatTransf.2013007609
  16. E. E. Wilson, "A Basis for Rational Design of Heat Transfer Apparatus," Trans. ASME, vol. 37, pp. 47-70, 1915.
  17. S. J. Kline, F. A. McClintock, "The Description of Uncertainties in Single Sample Experiments," Mechanical Engineering, vol. 75, pp. 3-9, 1953.
  18. M. M. Shah, "Chart Correlation for Saturated Boiling Heat Transfer: Equations and Further Study," ASHRAE Trans, vol. 88, Pt. 1, pp. 185-196, 1982.
  19. S. G. Kandlikar, "A General Correlation for Two-Phase Boiling Heat Transfer Coefficient Inside Horizontal and Vertical Tubes," J. Heat Transfer, vol. 112, pp. 219-228, 1990. DOI: https://doi.org/10.1115/1.2910348
  20. K. E. Gungor, R. H. S. Winterton, "Simplified General Correlations for Saturated Flow Boiling and Comparisons of Correlations with Data," Can. J. Chem. Eng., vol. 65, no. 1, pp. 148 - 156, 1987. https://doi.org/10.1002/cjce.5450650124
  21. L. Wojtan, T. Ursenbacher, J. R. Thome, "Investigation of Flow Boiling in Horizontal Tubes: Part II - Development of New Heat Transfer Model for Stratified-Wavy, Dryout and Mist Flow Regimes," Int. J. Heat Mass Transfer, vol. 48, pp. 2970-2985, 2005. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2004.12.013
  22. L. Doretti, C. Zilio, S. Mancin, A. Cavallini, "Condensation Flow Patterns Inside Plain and Microfin Tubes: A Review," Int. J. Refrig., vol. 36, pp. 567-587, 2013. DOI: https://doi.org/10.1016/j.ijrefrig.2012.10.021
  23. S. Koyama, J. Yu, S. Momoki, T. Fujii, H. Honda, "Forced Convective Flow Boiling Heat Transfer of Pure Refrigerants Inside a Horizontal Microfin Tube," Proc. of Engineering Foundation Conference on Convective Flow Boiling, ASME, Banff, Canada, 1995.
  24. O. Kido, M. Taniguchi, T. Taira, H. Uehara, "Evaporation Heat Transfer of HCFC22 Inside an Internally Grooved Horizontal Tube," Proc. of ASME/JSME Thermal Engineering Conference, vol. 2, pp. 323-330, 1995.
  25. J. R. Thome, N. Kattan, D. Favrat, "Evaporation in micro-fin tubes: A generalized prediction model," Proc. of Convective Flow and Pool Boiling Conf., Kloster Irsee, Paper VII-4, 1977.
  26. M. Goto, N. Inoue, N. Ishiwatari, "Condensation and Evaporation Heat Transfer of R-410A Inside Internally Grooved Horizontal Tubes," Int. J. Refrig., vol. 24, pp. 628-638, 2001. DOI: https://doi.org/10.1016/S0140-7007(00)00087-6
  27. T. A. Newell, R. K. Shah, "An Assessment of Refrigerant Heat Transfer, Pressure Drop and Void Fraction Effects in Microfin Tubes," Int. J. HVAC&R, vol. 7, no. 2, pp. 125-153, 2001. DOI: https://doi.org/10.1080/10789669.2001.10391267
  28. R. Yun, Y. Kim, K. Seo, H. Y. Kim, "A Generalized Correlation for Evaporation Heat Transfer of Refrigerants in Microfin Tubes," Int. J. Heat Mass Transfer, vol. 45, pp. 2003-2010, 2002. DOI: https://doi.org/10.1016/S0017-9310(01)00321-0
  29. L. M. Chamra, P. J. Mago, "Modeling of Evaporation Heat Transfer of Pure Refrigerants and Refrigerant Mixtures in Microfin Tubes," Proc. of Institution on Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 221, pp. 443-454, 2007. DOI: https://doi.org/10.1243/0954406JMES131
  30. J. G. Collier, J. R. Thome, Convective Boiling and Condensation, 3rd ed., Oxford University Press, 1994.
  31. S. M. Zivi, "Estimation of Steady-State Steam Void Fraction by Means of the Principle of Minimum Entropy Production," J. Heat Transfer, vol. 68, pp. 247-252, 1964. DOI: https://doi.org/10.1115/1.3687113
  32. S. L. Smith, "Void Fraction in Two-Phase Flow: A Correlation Based Upon an Equal Velocity Head Model," Inst. Mech. Eng., vol. 184, pp. 647-657, 1969-1970. DOI: https://doi.org/10.1243/PIME_PROC_1969_184_051_02
  33. Z. Rouhani, E. Axelsson, "Calculation of Void Volume Fraction in the Subcooled and Quality Boiling Regions," Int. J. Heat Mass Trans., vol. 13, pp. 383-393, 1970. DOI: https://doi.org/10.1016/0017-9310(70)90114-6
  34. T. A. Newell, R. K. Shah, "An Assessment of Refrigerant Heat Transfer, Pressure Drop and Void Fraction Effects in Microfin Tubes, Int. J. HVAC&R Research, vol. 7, no. 2, pp. 125-153, 2001. DOI: https://doi.org/10.1080/10789669.2001.10391267
  35. L. Friedel, "Improved Pressure Drop Correlations for Horizontal and Vertical Two-Phase Pipe Flow," 3R Int., vol. 18, pp. 485-492, 1979.
  36. H. Muller-Steinhagen, K. Heck, "A Simple Friction Pressure Drop Correlation for Two-Phase Flow in Pipes," Chem. Eng. Processing, vol. 20, pp. 297-308, 1986. DOI: https://doi.org/10.1016/0255-2701(86)80008-3
  37. D. Jung, R. Radermacher, "Prediction of Pressure Drop During Horizontal Annular Flow Boiling of Pure and Mixed Refrigerants," Int. J. Heat Mass Transfer, vol. 32, no. 12, pp. 2435-2446, 1989. DOI: https://doi.org/10.1016/0017-9310(89)90203-2
  38. J. Moreno Quiben, J. R. Thome, "Flow Pattern Based Two-Phase Frictional Pressure Drop Model for Horizontal Tubes, Part II: New Phenomenological Model," Int. J. Heat Fluid Flow, vol. 28, pp. 1060-1072, 2007. DOI: https://doi.org/10.1016/j.ijheatfluidflow.2007.01.004
  39. C. S. Kuo, C. C. Wang, "Horizontal Flow Boiling of R22 and R407C in a 9.52 mm Micro-Fin Tube," Applied Thermal Eng., vol. 16, no. 8, pp. 719-731, 1996. DOI: https://doi.org/10.1016/1359-4311(95)00076-3
  40. A. Cavallini, D. Del Col, L. Doretti, G. A. Longo, L. Rossetto, "Pressure Drop During Condensation and Vaporization of Refrigerants Inside Enhanced Tubes," Heat and Technology, vol. 15, no. 1, pp. 3-10, 1997.
  41. J. Y. Choi, M. A. Kedzierski, P. A. Domanski, "Generalized Pressure Drop Correlation for Evaporation and Condensation in Smooth and Microfin Tubes," Proc. of IIF-IIR Commission B1, Paderborn, Germany, B4, pp. 9-16, 2001.
  42. E. P. Bandarra Filho, J. M. Saiz Jabardo, P. E. Lopez Barbieri, "Convective Boiling Pressure Drop of Refrigerant R-134a in Horizontal Smooth and Microfin Tubes", Int. J. Refrig, vol. 27, pp. 895-903, 2004. DOI: https://doi.org/10.1016/j.ijrefrig.2004.04.014