DOI QR코드

DOI QR Code

Improved Drying Process for Electrodes in Production of Lithium-Ion Batteries for Electric Vehicles

전기자동차용 리튬이온 전지의 제조공정을 위해 개선된 극판 건조 기술

  • 장찬희 (아주대학교 시스템공학과) ;
  • 이재천 (아주대학교 시스템공학과)
  • Received : 2018.03.19
  • Accepted : 2018.06.01
  • Published : 2018.06.30

Abstract

An electric vehicle is an environmentally friendly vehicle because there is no exhaust gas, unlike gasoline automobiles. On the other hand, because the electric vehicle is driven by electric power charged in batteries, the distance to go through a single charge depends on the energy density of the batteries. Therefore, a lithium-ion battery with a high energy density is a good candidate for batteries in electric vehicles. Because the electrode is an essential component that governs the efficiency of a lithium-ion battery, the electrode manufacturing process plays a vital role in the entire production process of lithium-ion batteries. In particular, the drying process during the electrode manufacturing process is a critical process that has a significant influence on the performance. This paper proposes an innovative process for improving the efficiency and productivity of the drying process in electrode manufacturing and describe the equipment design method and development results. In particular, the design procedure and development method for enhancing the electrode adhesion power, atmospheric pressure superheated steam drying technology, and drying furnace slimming technologies are presented. As a result, high-speed drying technology was developed for battery electrodes through the world's first turbo dryer technology for mass production using open/integrated atmospheric pressure superheated steam. Compared to the conventional drying process, the drying furnace improved the productivity (Dry Lead Time $0.7min{\rightarrow}0.5min$).

전기자동차는 내연기관 자동차와는 달리 배출가스가 없어 친환경 차량을 대표하지만, 장착된 축전지에 충전된 전기로 구동되기 때문에, 1회 충전으로 갈 수 있는 거리가 전지의 에너지 밀도에 의해 좌우된다. 따라서 높은 에너지 밀도를 갖는 리튬이온 배터리가 전기구동자동차용 전지로 많이 사용하고 있다. 리튬이온 배터리의 효율을 지배하는 중요한 구성품은 전극이므로 전극 제조공정은 리튬이온 배터리 전체생산 공정에서 중요한 역할을 한다. 특히 전극의 제조 공정 중 건조공정은 성능에 큰 영향을 미치는 매우 중요한 공정이다. 본 논문에서는 전극제조에서 건조공법의 효율성 및 생산성 증대를 위한 혁신적인 공정을 제안하고, 장비 설계 방법 및 개발 결과에 대하여 기술하였다. 구체적으로, 극판 결착력 향상 기술, 대기압 과열증기 건조 기술, 그리고 건조로 폭 슬림화 기술들에 대한 설계 절차 및 개발방법을 제시하였다. 결과로 세계최초의 개방형/일체형 대기압 과열증기 Turbo Dryer 양산기술 확보를 통해 전기차 전지용 극판 고속건조기술을 확보 하였다. 기존의 건조공정과 비교할 때 건조로 길이 생산성을 향상시켰다 (건조 Lead Time 0.7분(分) ${\rightarrow}$ 0.5분(分)기준).

Keywords

References

  1. Business Information Research, Actual condition and prospect of eco-friendly electric vehicle market, Business Information Research, pp. 19-42, 2009.
  2. Zempachi Ogumi, Lithium Secondary Batteries, Hongrling Publish Company, 2010, pp. 4-53.
  3. Simon, P., Gogotsi, Y, "Materials for electrochemical capacitors," Nature materials, vol. 7, no. 11, pp. 845-854, 2008. DOI: https://doi.org/10.1038/nmat2297
  4. Park, J. G., Principles and Applications of lithium Secondary Batteries, Hong-Reung Science Press, pp. 428, 2014.
  5. Dong-Ju Lim, Battery Technology Symposium, The Korean Society of Industrial and Engineering Chemistry, 2000.
  6. W.A. Schalkwijk, B. Scrosati, Advances in Lithium-Ion Batteries, Kluwer Acadmic, New York, 2002. DOI: https://doi.org/10.1007/b113788
  7. Young-Sik Hong, Next-generation secondary battery application technology, Korea Industrial Technology Support Center, 2006.
  8. Sung-su Kim,Mobile Device Battery Industry Trend Analysis Seminar etnnew, 2008.
  9. Myung-Huan Kim, Energy Conversion Chemical Material Symposium, Korea Research Institute Of Chemical Technology, 2008.
  10. Og Sin Kim, Dong Hyun Lee, Won Pyo Chun, Eco-Friendly Drying Technology using Superheated Steam, Korean Chemical Engineering Research, Vol. 46, No. 2, pp. 258-273, 2008.