DOI QR코드

DOI QR Code

Inhibition of voltage-dependent K+ current in rabbit coronary arterial smooth muscle cells by the class Ic antiarrhythmic drug propafenone

  • An, Jin Ryeol (Department of Physiology, Kangwon National University School of Medicine) ;
  • Li, Hongliang (Department of Physiology, Kangwon National University School of Medicine) ;
  • Seo, Mi Seon (Department of Physiology, Kangwon National University School of Medicine) ;
  • Park, Won Sun (Department of Physiology, Kangwon National University School of Medicine)
  • Received : 2018.06.27
  • Accepted : 2018.07.26
  • Published : 2018.09.01

Abstract

In this study, we demonstrated the inhibitory effect of the Class Ic antiarrhythmic agent propafenone on voltage-dependent $K^+$ (Kv) channels using freshly isolated coronary artery smooth muscle cells from rabbits. The Kv current amplitude was progressively inhibited by propafenone in a dose-dependent manner, with an apparent $IC_{50}$ value of $5.04{\pm}1.05{\mu}M$ and a Hill coefficient of $0.78{\pm}0.06$. The application of propafenone had no significant effect on the steady-state activation and inactivation curves, indicating that propafenone did not affect the voltage-sensitivity of Kv channels. The application of train pulses at frequencies of 1 or 2 Hz progressively increased the propafenone-induced inhibition of the Kv current. Furthermore, the inactivation recovery time constant was increased after the application of propafenone, suggesting that the inhibitory action of propafenone on Kv current is partially use-dependent. Pretreatment with Kv1.5, Kv2.1 or Kv7 inhibitor did not change the inhibitory effect of propafenone on the Kv current. Together, these results suggest that propafenone inhibits the vascular Kv channels in a dose- and use-dependent manner, regardless of $Na^+$ channel inhibition.

Keywords

References

  1. Kishore AG, Camm AJ. Guidelines for the use of propafenone in treating supraventricular arrhythmias. Drugs. 1995;50:250-262. https://doi.org/10.2165/00003495-199550020-00005
  2. Benz I, Kohlhardt M. Responsiveness of cardiac Na+ channels to antiarrhythmic drugs: the role of inactivation. J Membr Biol. 1991;122:267-278. https://doi.org/10.1007/BF01871427
  3. Delgado C, Tamargo J, Henzel D, Lorente P. Effects of propafenone on calcium current in guinea-pig ventricular myocytes. Br J Pharmacol. 1993;108:721-727. https://doi.org/10.1111/j.1476-5381.1993.tb12868.x
  4. Duan D, Fermini B, Nattel S. Potassium channel blocking properties of propafenone in rabbit atrial myocytes. J Pharmacol Exp Ther. 1993;264:1113-1123.
  5. Delpon E, Valenzuela C, Perez O, Casis O, Tamargo J. Propafenone preferentially blocks the rapidly activating component of delayed rectifier $K^{+}$ current in guinea pig ventricular myocytes. Voltageindependent and time-dependent block of the slowly activating component. Circ Res. 1995;76:223-235. https://doi.org/10.1161/01.RES.76.2.223
  6. Cogolludo AL, Perez-Vizcaino F, Lopez-Lopez G, Ibarra M, Zaragoza-Arnaez F, Tamargo J. Propafenone modulates potassium channel activities of vascular smooth muscle from rat portal veins. J Pharmacol Exp Ther. 2001;299:801-810.
  7. Nelson MT, Quayle JM. Physiological roles and properties of potassium channels in arterial smooth muscle. Am J Physiol. 1995;268:C799-822. https://doi.org/10.1152/ajpcell.1995.268.4.C799
  8. Leblanc N, Wan X, Leung PM. Physiological role of $Ca^{2+}$-activated and voltage-dependent $K^{+}$ currents in rabbit coronary myocytes. Am J Physiol. 1994;266:C1523-1537. https://doi.org/10.1152/ajpcell.1994.266.6.C1523
  9. Cook NS. Effect of some potassium channel blockers on contractile responses of the rabbit aorta. J Cardiovasc Pharmacol. 1989;13:299-306. https://doi.org/10.1097/00005344-198902000-00019
  10. Hara Y, Kitamura K, Kuriyama H. Actions of 4-aminopyridine on vascular smooth muscle tissues of the guinea-pig. Br J Pharmacol. 1980;68:99-106. https://doi.org/10.1111/j.1476-5381.1980.tb10704.x
  11. Uchida Y, Nakamura F, Tomaru T, Sumino S, Kato A, Sugimoto T. Phasic contractions of canine and human coronary arteries induced by potassium channel blockers. Jpn Heart J. 1986;27:727-740. https://doi.org/10.1536/ihj.27.727
  12. Ko EA, Han J, Jung ID, Park WS. Physiological roles of $K^{+}$ channels in vascular smooth muscle cells. J Smooth Muscle Res. 2008;44:65-81. https://doi.org/10.1540/jsmr.44.65
  13. Bratz IN, Dick GM, Partridge LD, Kanagy NL. Reduced molecular expression of $K^{+}$ channel proteins in vascular smooth muscle from rats made hypertensive with N{omega}-nitro-L-arginine. Am J Physiol Heart Circ Physiol. 2005;289:H1277-1283. https://doi.org/10.1152/ajpheart.01052.2004
  14. Wang Q, Curran ME, Splawski I, Burn TC, Millholland JM, Van-Raay TJ, Shen J, Timothy KW, Vincent GM, de Jager T, Schwartz PJ, Toubin JA, Moss AJ, Atkinson DL, Landes GM, Connors TD, Keating MT. Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat Genet. 1996;12:17-23. https://doi.org/10.1038/ng0196-17
  15. Snyders DJ, Yeola SW. Determinants of antiarrhythmic drug action. Electrostatic and hydrophobic components of block of the human cardiac hKv1.5 channel. Circ Res. 1995;77:575-583. https://doi.org/10.1161/01.RES.77.3.575
  16. Lee HA, Hyun SA, Park SG, Kim KS, Kim SJ. Comparison of electrophysiological effects of calcium channel blockers on cardiac repolarization. Korean J Physiol Pharmacol. 2016;20:119-127. https://doi.org/10.4196/kjpp.2016.20.1.119
  17. Kuriyama H, Kitamura K, Nabata H. Pharmacological and physiological significance of ion channels and factors that modulate them in vascular tissues. Pharmacol Rev. 1995;47:387-573.
  18. Hii JT, Wyse DG, Gillis AM, Cohen JM, Mitchell LB. Propafenoneinduced torsade de pointes: cross-reactivity with quinidine. Pacing Clin Electrophysiol. 1991;14:1568-1570. https://doi.org/10.1111/j.1540-8159.1991.tb02729.x
  19. Rehnqvist N, Ericsson CG, Eriksson S, Olsson G, Svensson G. Comparative investigation of the antiarrhythmic effect of propafenone (Rytmonorm) and lidocaine in patients with ventricular arrhythmias during acute myocardial infarction. Acta Med Scand. 1984;216:525-530.
  20. Slawsky MT, Castle NA. $K^{+}$ channel blocking actions of flecainide compared with those of propafenone and quinidine in adult rat ventricular myocytes. J Pharmacol Exp Ther. 1994;269:66-74.
  21. Hoppe UC, Beuckelmann DJ. Modulation of the hyperpolarizationactivated inward current (If) by antiarrhythmic agents in isolated human atrial myocytes. Naunyn Schmiedebergs Arch Pharmacol. 1998;358:635-640. https://doi.org/10.1007/PL00005305
  22. Kim HS, Li H, Kim HW, Shin SE, Seo MS, An JR, Ha KS, Han ET, Hong SH, Choi IW, Choi G, Lee DS, Park WS. Escitalopram, a selective serotonin reuptake inhibitor, inhibits voltage-dependent $K^{+}$ channels in coronary arterial smooth muscle cells. Korean J Physiol Pharmacol. 2017;21:415-421. https://doi.org/10.4196/kjpp.2017.21.4.415
  23. Shin SE, Li H, Kim HS, Kim HW, Seo MS, Ha KS, Han ET, Hong SH, Firth AL, Choi IW, Bae YM, Park WS. Nortriptyline, a tricyclic antidepressant, inhibits voltage-dependent $K^{+}$ channels in coronary arterial smooth muscle cells. Korean J Physiol Pharmacol. 2017;21:225-232. https://doi.org/10.4196/kjpp.2017.21.2.225
  24. Li H, Kim HS, Kim HW, Shin SE, Jung WK, Ha KS, Han ET, Hong SH, Firth AL, Bae YM, Choi IW, Park WS. The class III antiarrhythmic agent, amiodarone, inhibits voltage-dependent $K^{+}$ channels in rabbit coronary arterial smooth muscle cells. Naunyn Schmiedebergs Arch Pharmacol. 2016;389:713-721. https://doi.org/10.1007/s00210-016-1232-8
  25. Xu C, Lu Y, Tang G, Wang R. Expression of voltage-dependent $K^{+}$ channel genes in mesenteric artery smooth muscle cells. Am J Physiol. 1999;277:G1055-1063.
  26. Jepps TA, Olesen SP, Greenwood IA. One man's side effect is another man's therapeutic opportunity: targeting Kv7 channels in smooth muscle disorders. Br J Pharmacol. 2013;168:19-27. https://doi.org/10.1111/j.1476-5381.2012.02133.x
  27. Thorneloe KS, Chen TT, Kerr PM, Grier EF, Horowitz B, Cole WC, Walsh MP. Molecular composition of 4-aminopyridine-sensitive voltage-gated $K^{+}$ channels of vascular smooth muscle. Circ Res. 2001;89:1030-1037. https://doi.org/10.1161/hh2301.100817
  28. Li Q, Zhang R, Lu CL, Liu Y, Wang Z, Zhu DL. The role of subtypes of voltage-gated $K^{+}$ channels in pulmonary vasoconstriction induced by 15-hydroeicosatetraenoic acid. Yao Xue Xue Bao. 2006;41:412-417.
  29. Cox RH, Fromme S. Functional expression profile of voltage-gated $K^{+}$ channel subunits in rat small mesenteric arteries. Cell Biochem Biophys. 2016;74:263-276. https://doi.org/10.1007/s12013-015-0715-4
  30. Stott JB, Povstyan OV, Carr G, Barrese V, Greenwood IA. G-protein ${\beta}{\gamma}$ subunits are positive regulators of Kv7.4 and native vascular Kv7 channel activity. Proc Natl Acad Sci U S A. 2015;112:6497-6502. https://doi.org/10.1073/pnas.1418605112
  31. Kang KW, Shim J, Ahn J, Lee DI, Kim J, Joung B, Choi KJ. 2018 Korean heart rhythm society guidelines for antiarrhythmic drug therapy in non-valvular atrial fibrillation. Korean J Med. 2018;93:140-152. https://doi.org/10.3904/kjm.2018.93.2.140
  32. Siddoway LA, Roden DM, Woosley RL. Clinical pharmacology of propafenone: pharmacokinetics, metabolism and concentrationresponse relations. Am J Cardiol. 1984;54:9D-12D. https://doi.org/10.1016/S0002-9149(84)80278-7
  33. Nelson MT, Patlak JB, Worley JF, Standen NB. Calcium channels, potassium channels, and voltage dependence of arterial smooth muscle tone. Am J Physiol. 1990;259:C3-18. https://doi.org/10.1152/ajpcell.1990.259.1.C3

Cited by

  1. The anticholinergic drug oxybutynin inhibits voltage‐dependent K+ channels in coronary arterial smooth muscle cells vol.46, pp.11, 2018, https://doi.org/10.1111/1440-1681.13138