DOI QR코드

DOI QR Code

INFINITELY MANY SMALL ENERGY SOLUTIONS FOR EQUATIONS INVOLVING THE FRACTIONAL LAPLACIAN IN ℝN

  • Kim, Yun-Ho (Department of Mathematics Education Sangmyung University)
  • Received : 2017.10.25
  • Accepted : 2018.04.24
  • Published : 2018.09.01

Abstract

We are concerned with elliptic equations in ${\mathbb{R}}^N$, driven by a non-local integro-differential operator, which involves the fractional Laplacian. The main aim of this paper is to prove the existence of small solutions for our problem with negative energy in the sense that the sequence of solutions converges to 0 in the $L^{\infty}$-norm by employing the regularity type result on the $L^{\infty}$-boundedness of solutions and the modified functional method.

Keywords

References

  1. R. A. Adams and J. J. F. Fournier, Sobolev Spaces, second edition, Pure and Applied Mathematics (Amsterdam), 140, Elsevier/Academic Press, Amsterdam, 2003.
  2. A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis 14 (1973), 349-381. https://doi.org/10.1016/0022-1236(73)90051-7
  3. G. Autuori and P. Pucci, Elliptic problems involving the fractional Laplacian in ${\mathbb{R}}^N$, J. Differential Equations 255 (2013), no. 8, 2340-2362. https://doi.org/10.1016/j.jde.2013.06.016
  4. B. Barrios, E. Colorado, A. de Pablo, and U. Sanchez, On some critical problems for the fractional Laplacian operator, J. Differential Equations 252 (2012), no. 11, 6133-6162. https://doi.org/10.1016/j.jde.2012.02.023
  5. J. Bertoin, Levy Processes, Cambridge Tracts in Mathematics, 121, Cambridge University Press, Cambridge, 1996.
  6. Z. Binlin, G. Molica Bisci, and R. Servadei, Superlinear nonlocal fractional problems with infinitely many solutions, Nonlinearity 28 (2015), no. 7, 2247-2264. https://doi.org/10.1088/0951-7715/28/7/2247
  7. C. Bjorland, L. Caffarelli, and A. Figalli, Non-local gradient dependent operators, Adv. Math. 230 (2012), no. 4-6, 1859-1894. https://doi.org/10.1016/j.aim.2012.03.032
  8. L. Caffarelli, Non-local diffusions, drifts and games, in Nonlinear partial differential equations, 37-52, Abel Symp., 7, Springer, Heidelberg, 2012.
  9. X. Chang and Z.-Q. Wang, Nodal and multiple solutions of nonlinear problems involving the fractional Laplacian, J. Differential Equations 256 (2014), no. 8, 2965-2992. https://doi.org/10.1016/j.jde.2014.01.027
  10. E. B. Choi, J.-M. Kim, and Y.-H. Kim, Infinitely many solutions for equations of p(x)-Laplace type with the nonlinear Neumann boundary condition, Proc. Roy. Soc. Edinburgh Sect. A 148 (2018), no. 1, 1-31. https://doi.org/10.1017/S0308210517000117
  11. E. Di Nezza, G. Palatucci, and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), no. 5, 521-573. https://doi.org/10.1016/j.bulsci.2011.12.004
  12. P. Drabek, A. Kufner, and F. Nicolosi, Quasilinear Elliptic Equations with Degenerations and Singularities, Walter de Gruyter & Co. Berlin, 1997.
  13. Z. Gao, X. Tang, and W. Zhang, Multiplicity and concentration of solutions for fractional Schrodinger equations, Taiwanese J. Math. 21 (2017), no. 1, 187-210. https://doi.org/10.11650/tjm.21.2017.7147
  14. B. Ge, Multiple solutions of nonlinear Schrodinger equation with the fractional Laplacian, Nonlinear Anal. Real World Appl. 30 (2016), 236-247. https://doi.org/10.1016/j.nonrwa.2016.01.003
  15. G. Gilboa and S. Osher, Nonlocal operators with applications to image processing, Multiscale Model. Simul. 7 (2008), no. 3, 1005-1028. https://doi.org/10.1137/070698592
  16. T.-X. Gou and H.-R. Sun, Solutions of nonlinear Schrodinger equation with fractional Laplacian without the Ambrosetti-Rabinowitz condition, Appl. Math. Comput. 257 (2015), 409-416.
  17. Z. Guo, Elliptic equations with indefinite concave nonlinearities near the origin, J. Math. Anal. Appl. 367 (2010), no. 1, 273-277. https://doi.org/10.1016/j.jmaa.2010.01.012
  18. H.-P. Heinz, Free Ljusternik-Schnirelman theory and the bifurcation diagrams of certain singular nonlinear problems, J. Differential Equations 66 (1987), no. 2, 263-300. https://doi.org/10.1016/0022-0396(87)90035-0
  19. Y. Jing and Z. Liu, Infinitely many solutions of p-sublinear p-Laplacian equations, J. Math. Anal. Appl. 429 (2015), no. 2, 1240-1257. https://doi.org/10.1016/j.jmaa.2015.04.069
  20. N. Laskin, Fractional quantum mechanics and Levy path integrals, Phys. Lett. A 268 (2000), no. 4-6, 298-305. https://doi.org/10.1016/S0375-9601(00)00201-2
  21. N. Laskin, Fractional Schrodinger equation, Phys. Rev. E (3) 66 (2002), no. 5, 056108, 7 pp. https://doi.org/10.1103/PhysRevE.66.056108
  22. R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep. 339 (2000), no. 1, 77 pp.
  23. R. Metzler and J. Klafter, The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics, J. Phys. A 37 (2004), no. 31, R161-R208. https://doi.org/10.1088/0305-4470/37/31/R01
  24. D. Naimen, Existence of infinitely many solutions for nonlinear Neumann problems with indefinite coefficients, Electron. J. Differential Equations 2014 (2014), no. 181, 12 pp.
  25. K. Perera, M. Squassina, and Y. Yang, Bifurcation and multiplicity results for critical fractional p-Laplacian problems, Math. Nachr. 289 (2016), no. 2-3, 332-342. https://doi.org/10.1002/mana.201400259
  26. K. Perera, M. Squassina, and Y. Yang, Critical fractional p-Laplacian problems with possibly vanishing potentials, J. Math. Anal. Appl. 433 (2016), no. 2, 818-831. https://doi.org/10.1016/j.jmaa.2015.08.024
  27. S. Secchi, Ground state solutions for nonlinear fractional Schrodinger equations in ${\mathbb{R}}^N$, J. Math. Phys. 54 (2013), no. 3, 031501, 17 pp. https://doi.org/10.1063/1.4793990
  28. R. Servadei, Infinitely many solutions for fractional Laplace equations with subcritical nonlinearity, in Recent trends in nonlinear partial differential equations. II. Stationary problems, 317-340, Contemp. Math., 595, Amer. Math. Soc., Providence, RI, 2013.
  29. R. Servadei and E. Valdinoci, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl. 389 (2012), no. 2, 887-898. https://doi.org/10.1016/j.jmaa.2011.12.032
  30. Z. Tan and F. Fang, On superlinear p(x)-Laplacian problems without Ambrosetti and Rabinowitz condition, Nonlinear Anal. 75 (2012), no. 9, 3902-3915. https://doi.org/10.1016/j.na.2012.02.010
  31. K. Teng, Multiple solutions for a class of fractional Schrodinger equations in ${\mathbb{R}}^N$, Nonlinear Anal. Real World Appl. 21 (2015), 76-86. https://doi.org/10.1016/j.nonrwa.2014.06.008
  32. Z.-Q. Wang, Nonlinear boundary value problems with concave nonlinearities near the origin, NoDEA Nonlinear Differential Equations Appl. 8 (2001), no. 1, 15-33. https://doi.org/10.1007/PL00001436
  33. Y. Wei and X. Su, Multiplicity of solutions for non-local elliptic equations driven by the fractional Laplacian, Calc. Var. Partial Differential Equations 52 (2015), no. 1-2, 95-124. https://doi.org/10.1007/s00526-013-0706-5
  34. M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, 24, Birkhauser Boston, Inc., Boston, MA, 1996.
  35. B. Zhang and M. Ferrara, Multiplicity of solutions for a class of superlinear non-local fractional equations, Complex Var. Elliptic Equ. 60 (2015), no. 5, 583-595. https://doi.org/10.1080/17476933.2014.959005
  36. W. Zou, Variant fountain theorems and their applications, Manuscripta Math. 104 (2001), no. 3, 343-358. https://doi.org/10.1007/s002290170032