DOI QR코드

DOI QR Code

Effect of Inlet Shape on Thermal Flow Characteristics for Waste Gas in a Thermal Decomposition Reactor of Scrubber System

반도체 폐가스 처리용 열분해반응기의 입구형상이 열유동 특성에 미치는 영향에 관한 수치해석 연구

  • Yoon, Jonghyuk (Plant Engineering Center, Institute for Advanced Engineering) ;
  • Kim, Youngbae (Plant Engineering Center, Institute for Advanced Engineering) ;
  • Song, Hyungwoon (Plant Engineering Center, Institute for Advanced Engineering)
  • 윤종혁 (고등기술연구원 플랜트엔지니어링센터) ;
  • 김영배 (고등기술연구원 플랜트엔지니어링센터) ;
  • 송형운 (고등기술연구원 플랜트엔지니어링센터)
  • Received : 2018.03.27
  • Accepted : 2018.05.16
  • Published : 2018.10.10

Abstract

Recently, lots of interests have been concentrated on the scrubber system that abates waste gases produced from semiconductor manufacturing processes. An effective design of the thermal decomposition reactor inside a scrubber system is significantly important since it is directly related to the removal performance of pollutants and overall stabilities. In the present study, a computational fluid dynamics (CFD) analysis was conducted to figure out the thermal and flow characteristics inside the reactor of wet scrubber. In order to verify the numerical method, the temperature at several monitoring points was compared to that of experimental results. Average error rates of 1.27~2.27% between both the results were achieved, and numerical results of the temperature distribution were in good agreement with the experimental data. By using the validated numerical method, the effect of the reactor geometry on the heat transfer rate was also taken into consideration. From the result, it was observed that the flow and temperature uniformity were significantly improved. Overall, our current study could provide useful information to identify the fluid behavior and thermal performance for various scrubber systems.

최근에 반도체 산업의 지속적인 발전에 따라 반도체 생산공정에서 발생하는 다양한 오염가스를 처리하는 기술에 대한 관심도 늘어나고 있다. 이처럼 반도체 공정 후 배출되는 폐가스를 제거하는 장치 중의 하나로서 다양한 종류의 스크러버 시스템이 사용되고 있다. 이러한 스크러버 시스템 내 열분해반응기 성능은 폐가스 내 오염원 제거효율과 전반적인 운전안정성에 영향을 미치기 때문에 열분해 반응기의 효율적인 설계가 매우 중요하다. 본 연구에서는 수치해석 방법을 기반으로 반응기 내 폐가스의 열유동 특성을 파악하고자 하였다. 해석기법을 검증하기 위해 온도분포에 대한 해석결과를 실험결과와 비교하였다. 온도결과에 대한 해석과 실험은 약 1.27~2.25% 수준의 낮은 오차를 보였으며 이를 통해 해석결과의 타당성을 확보하였다. 검증된 해석기법을 이용하여, 기존 반응기의 성능개선을 위한 설계 가이드라인을 제시하기 위해 폐가스 형상 변화에 따른 해석을 수행하여 기존모델 및 수정모델에서 폐가스의 거동특성을 비교분석하였다. 본 연구에서 수행한 결과는 다양한 스크러버 시스템 내 열유동 특성을 분석하는데 기초자료로 활용될 수 있을 것으로 기대한다.

Keywords

References

  1. H. Park, W. Cha, and S. Uhm, Highly efficient thermal plasma scrubber technology for the treatment of perfluorocompounds (PFCs), Appl. Chem. Eng., 29(1), 10-17 (2018). https://doi.org/10.14478/ACE.2017.1127
  2. M. B. Chang and J. S. Chang, Abatement of PFCs from semiconductor manufacturing processes by nonthermal plasma technologies: a critical review, Ind. Eng. Chem. Res., 45, 4101-4109 (2006). https://doi.org/10.1021/ie051227b
  3. D. Choi, Gas Scrubber, Korean Patent, KR100325197B1 (2002).
  4. S. Oh, J. Park, J. Jeong, B. Lee, and J. Kim, Continuous remove method and equipment of LED manufacturing process exhaust gas using wet-scrubber and catalyst reaction scrubber, Korean Patent, KR101211625B1 (2012).
  5. Clean System Korea, Inc., Development of advanced eco-friendly treatment system for reducing the NOx, CO, and greenhouse gases emission in semiconductor processing, Research Report 012-091-061, The Ministry of Environment, Korea (2011).
  6. S. Kim and Y. Chun, Numerical analysis of a gliding arc plasma scrubber for $CO_2$ conversion, J. Korean Soc. Atmos. Environ., 30(4), 339-349 (2014). https://doi.org/10.5572/KOSAE.2014.30.4.339
  7. L. S. Lebel, M. H. Piro, R. MacCoy, A. Clouthier, and Y. Chin, Concept for a cyclonic spray scrubber as a fission product removal system for filtered containment venting, Nucl. Eng. Des., 297, 60-71 (2016). https://doi.org/10.1016/j.nucengdes.2015.11.036
  8. A. Huang, N. Maeda, S. Sunada, T. Fukasawa, H. Yoshida, H. Kuo, and K. Fukui, Effect of cold air stream injection on cyclone performance at high temperature, Sep. Purif. Technol., 183, 293-303 (2017). https://doi.org/10.1016/j.seppur.2017.04.012
  9. J. Park and K. Park, Effect of guide angle of swirl-type scrubber on flow characteristics of exhaust gas, J. Korean Soc. Mar. Eng., 41(9), 767-772 (2017). https://doi.org/10.5916/jkosme.2017.41.9.767
  10. J. Lee, C. Jang, Y. Oh, H. Jung, and H. Jo, Internal flow analysis of semiconductor gas scrubber using CFD, Proceedings of the Korean Society for Computational Fluids Engineering Spring Conference, May 23, Pusan National University, Busan, Korea (2012).
  11. Y. Kim, H. Lee, M. Sung, Y. Kim, and J. Cho, Flow analysis and temperature distribution of the inside of scrubber using micro wave, Proceedings of the KASI Fall Conference, Jeju Grand Hotel, Jeju Island, Korea (2014).
  12. T. L. Bergman, A. S. Lavine, F. P. Incropera, and D. P. DeWitt, Introduction to Heat Transfer, 5th ed., John Wiley & Sons Inc., 943 (2007).
  13. R. Span, E. W. Lemmon, R. T. Jacobsen, W. Wagner, and A. Yokozeki, A reference equation of state for the thermodynamic properties of nitrogen for temperatures from 63.151 to 1000 K and pressures to 2200 MPa, J. Phys. Chem. Ref. Data, 29(6), 1361-1433 (2000). https://doi.org/10.1063/1.1349047
  14. J. J. Hurly, Thermodynamic properties of gaseous nitrous oxide and nitric oxide from speed-of-sound measurements, Int. J. Thermophys., 24(6), 1611-1635 (2003). https://doi.org/10.1023/B:IJOT.0000004095.80581.d8
  15. ANSYS Incorporation, The Manual of ANSYS CFX, Version 18.0, USA (2017).