DOI QR코드

DOI QR Code

Study on Electrochemical Detection of Cyclodextrin-molecule Interactions for Sensor Applications

센서 응용을 위한 사이클로덱스트린-분자 상호작용의 전기화학적 검출

  • Park, Minji (Department of Applied Chemistry, Dongduk Women's University) ;
  • Kim, Sooyeoun (Graduate School of Hygiene and Aesthetic, Dongduk Women's University) ;
  • Bae, Joonwon (Department of Applied Chemistry, Dongduk Women's University)
  • 박민지 (동덕여자대학교 응용화학과) ;
  • 김수연 (동덕여자대학교 보건향장대학원) ;
  • 배준원 (동덕여자대학교 응용화학과)
  • Received : 2018.04.07
  • Accepted : 2018.05.17
  • Published : 2018.10.10

Abstract

Cyclodextrins are a class of oligosaccharides having an extremely low toxicity, so that they have been used for the formation of host-guest complexes and removal of toxic gases or molecules. In this study, the subtle phenomenon associated with the formation of host-guest complexes between cyclodextrin and toxic molecules (methyl paraben) was experimentally investigated. First, the formation of cyclodextrin-methyl paraben complexes was monitored by UV/Vis spectroscopy as a function of the cyclodextrin concentration. Secondly, the electrochemical measurement was performed with the surface engineered Au electrode having cyclodextrin molecules on the Au substrate. The sensing signal derived from the addition of methyl paraben solution into the Au surface was measured delicately. This study can be informative for future applications such as sensors.

사이클로덱스트린(cyclodextrin)은 환형다당류(cyclic oligosaccharide) 분자들의 일종으로서, 독성을 거의 지니지 않으며, 다른 분자를 포획할 수 있는 기능을 갖고 있다. 따라서, 이 분자들은 유해물질이나 유독가스를 제거하는데 활용되어 왔다. 본 연구에서는, 이 분자들이 다른 분자를 포획하여 host-guest 화합물을 형성할 수 있다는 점에 착안하여, 이 화합물의 생성 시에 수반되는 전기화학적 변화를 감지하는 방법론을 탐구하고자 한다. 먼저, host-guest 화합물의 형성은 자외선 분광기를 통해서 고찰한다. 사이클로덱스트린의 농도를 바꿔가면서 화합물의 형성을 모니터링한다. 그리고, 실질적인 검출은 금전극에 표면 처리 과정을 거쳐 사이클로덱스트린 분자를 도입하고, 이 전극에 모델분자인 메틸파라벤(methyl paraben)을 도입하여 전기화학적 변화를 감지하는 방식으로 도모하였다. 그 결과, host-guest 화합물 형성 시에 전하의 전이가 일어나고, 이를 전기화학적 측정 방식으로도 검출할 수 있다는 가능성을 실험적으로 보여주었다. 이는 무독성 분자인 사이클로덱스트린의 활용도를 넓힐 수 있는 의미있는 결과로 기대된다.

Keywords

References

  1. J. Jang and J. Bae, Selective fabrication of polymer nanocapsules and nanotubes using cyclodextrin as a nanoporogen, Macromol. Rapid Commun., 26, 1320-1324 (2005). https://doi.org/10.1002/marc.200500292
  2. J. Zhang, Y. Li, M. Bao, X. Yang, and Z. Wang, Facile fabrication of cyclodextrin-modified magnetic particles for effective demulsification from various types of emulsions, Environ. Sci. Technol., 50, 8809-8816 (2016). https://doi.org/10.1021/acs.est.6b01941
  3. R. Zhang, L. Li, J. Feng, L. Tong, Q. Wang, and B. Tang, Versatile triggered release of multiple molecules from cyclodextrinmodified gold-gated mesoporous silica nanocontainers, ACS Appl. Mater. Interfaces, 6, 9932-9936 (2014). https://doi.org/10.1021/am502463h
  4. D. Bogdan, Electronic structure and driving forces in ${\alpha}$-cyclodextrin: butylparaben inclusion complexes, Phys. Lett. A, 372, 4257-4262 (2008). https://doi.org/10.1016/j.physleta.2008.03.046
  5. M. Fatiha, L. Leila, N. Leila, and K. D. Eddine, Computational study on the encapsulation of ethylparaben into b-cyclodextrin, J. Incl. Phenom. Macrocycl. Chem., 76, 379-384 (2013). https://doi.org/10.1007/s10847-012-0209-6
  6. L. Liu, K. S. Song, X. S. Li, and Q. X. Guo, Charge-transfer interaction: A driving force for cyclodextrin inclusion complexation, J. Incl. Phenom. Macrocycl. Chem., 40, 35-39 (2001). https://doi.org/10.1023/A:1011170026406
  7. Y. Hwang, J. Y. Park, C. -S. Lee, O. S. Kwon, S. H. Park, and J. Bae, Surface engineered poly(dimethylsiloxane)/carbon nanotube nanocomposite pad as a flexible platform for chemical sensors, Composites A, 107, 55-60 (2018). https://doi.org/10.1016/j.compositesa.2017.12.027
  8. H. M. Heise, R. Kuckuk, A. Bereck, and D. Riegal, Infrared spectroscopy and Raman spectroscopy of cyclodextrin derivatives and their ferrocene inclusion complexes, Vib. Spectrosc., 53, 19-23 (2010). https://doi.org/10.1016/j.vibspec.2010.01.012
  9. J. H. Yang, H. T. Kim, and H. Kim, A cyclodextrin-based approach for selective detection of catecholamine hormone mixtures, Micro Nano Syst. Lett., 2, 1-10 (2014). https://doi.org/10.1186/s40486-014-0001-z
  10. S. Asman, S. Mohamad, and N. M. Sarih, Exploiting ${\beta}$-cyclodextrin in molecular imprinting for achieving recognition of benzylparaben in aqueous media, Int. J. Mol. Sci., 16, 3656-3676 (2015). https://doi.org/10.3390/ijms16023656
  11. M. J. Jenita, J. Thulasidhasan, and N. Rajendiran, Encapsulation of alkylparabens with natural and modified ${\alpha}$ and ${\beta}$-cyclodextrins, J. Incl. Phenom. Macrocycl. Chem., 79, 365-381 (2014). https://doi.org/10.1007/s10847-013-0360-8