DOI QR코드

DOI QR Code

Effects of Operating Conditions on Adsorption and Desorption of Benzene in TSA Process Using Activated Carbon and Zeolite 13X

활성탄과 제올라이트 13X 충진탑을 사용한 TSA 공정에서 조업조건이 벤젠의 흡착 및 탈착에 미치는 영향

  • Jung, Min-Young (Department of Chemical Engineering, Hong-Ik University) ;
  • Suh, Sung-Sup (Department of Chemical Engineering, Hong-Ik University)
  • 정민영 (홍익대학교 화학공학과) ;
  • 서성섭 (홍익대학교 화학공학과)
  • Received : 2018.06.19
  • Accepted : 2018.07.19
  • Published : 2018.10.10

Abstract

The effects of operating conditions such as benzene concentration, nitrogen flow rate, steam flow rate, and bed temperature on TSA process were experimentally investigated as a potential VOC removal technology using two kinds of beds packed with activated carbon and zeolite 13X. The TSA cycle studied was composed of the adsorption step, steam desorption step, and drying and cooling step. At 2% benzene concentration, the total adsorption amounts of zeolite 13X and activated carbon were 4.44 g and 3.65 g, respectively. Since the zeolite 13X has a larger packing density than that of the activated carbon, the larger benzene amount could be adsorbed in a single cycle. Increasing the water vapor flow rate to 75 g/hr at 2% benzene concentration reduced the desorption time from 1 hr to a maximum of 33 min. If the desorption time is shortened, the drying and cooling step period can be relatively increased. Accordingly, the steam removal and bed cooling could be sufficiently performed. The desorption amounts increased with the increase of the bed temperature. However, the energy consumption increased while the desorption amount was almost constant above $150^{\circ}C$. In the continuous cycle process, when the amount of remained benzene at the completion of the regeneration step increased, it might cause a decrease in the working capacity of the adsorbent. The continuous cycle process experiment for zeolite 13X showed that the amount of remained benzene at the end of regeneration step maintained a constant value after the fourth cycle.

본 연구는 VOC 제거 기술인 TSA 공정에서 제올라이트 13X와 활성탄이 채워진 두 종류의 탑을 사용하여 원료농도, 질소 유량, 수증기 유량, 탑 온도 등 조업조건의 영향을 분석하였다. 본 연구의 TSA 사이클은 흡착단계, 수증기 탈착단계, 건조 및 냉각단계로 구성되었다. 2% 벤젠 농도에서 제올라이트 13X와 활성탄의 사이클 당 전체 흡착량은 각각 4.44 g과 3.65 g으로 활성탄보다 충전밀도가 큰 제올라이트 13X가 더 많은 양의 벤젠을 흡착할 수 있었다. 수증기 탈착의 결과에서 수증기 유량을 증가시키고 탑의 외부 가열로 온도를 높이면 탈착시간이 짧아지고 배출되는 벤젠의 농도가 높아지는 것으로 나타났다. 2% 벤젠 농도에서 수증기 유량을 75 g/hr로 증가시키면 탈착시간이 1 hr에서 최대 33 min까지 단축되어 상대적으로 건조 및 냉각단계의 시간이 늘어나 수증기 제거와 탑 냉각을 충분히 진행할 수 있었다. 탑 온도를 높이면 탈착량이 증가하나 $150^{\circ}C$ 이상에서는 에너지소비는 증가하는 반면 탈착량은 거의 일정했다. 연속 사이클 조업에서 재생단계 완료 시 잔존하게 되는 벤젠의 비율이 늘어나면 흡착제 working capacity 감소의 원인이 될 수 있다. 제올라이트 13X를 이용해 연속 사이클 공정실험을 수행한 결과 탑 내부에 잔존하는 벤젠의 비율이 4번째 사이클 이후 일정한 값으로 유지되었다.

Keywords

References

  1. J. H. Park, S. Y. Kang, I. H. Song, D. W. Lee, and S. Y. Cho, Characteristics of long-term behavior of VOC species in Korea-PAMS data analysis, J. Korean Soc. Atmos. Environ., 34(1), 56-75 (2018). https://doi.org/10.5572/KOSAE.2018.34.1.056
  2. H. J. Ju, J. G. Lee, T. J. Kim, and G. H. Kwon, Priority ranking analysis of air quality policies in Seoul city, J. Gov. Stud., 18(3), 359-385 (2012).
  3. M. B. Park, T. J. Lee, E. S. Lee, and D. S. Kim, A comparative study on the ambient air quality standard strength among Korea, the U.S.A. and the EU, J. Korean Soc. Atmos. Environ., 32(6), 559-574 (2016). https://doi.org/10.5572/KOSAE.2016.32.6.559
  4. B. Jocelyn, J. B. Chalfen, and M. Francis, Temperature swing adsorption process with indirect cooling and heating, Ind. Eng. Chem. Res., 41, 5802-5811 (2002). https://doi.org/10.1021/ie011011j
  5. A. Yadav, Influence of parameters on adsorption of aromatic compounds from N-paraffins using commercial adsorbents, Int. J. Eng. Technol. Sci. Res., 4(5), 2398-404 (2017).
  6. W. Zeng and H. Bai, Adsorption/desorption behaviors of acetone over micro-/mesoporous SBA-16 silicas prepared from rice husk agricultural waste, Aerosol Air Qual. Res., 16, 2267-2277 (2016). https://doi.org/10.4209/aaqr.2016.01.0018
  7. K. Leila, H. Mohammad, and F. Esmaeil, Adsorption of benzene and toluene from waste gas using activated carbon activated by $ZnCl_2$, Front. Environ. Sci. Eng., 8(6), 835-844 (2014). https://doi.org/10.1007/s11783-014-0695-4
  8. J. G. Akpa and C. G. Nmegbu, Adsorption of benzene on activated carbon from agricultural waste materials, Res. J. Chem. Sci., 4(9), 34-40 (2014).
  9. A. Veksha, M. A. Uddin, E. Sasaoka, and Y. Kato, Benzene adsorption from dry and humid air on activated carbons from japanese cypress wood prepared by $CO_2$ and $K_2CO_3$ activation, Int. J. Chem. Eng. Appl., 3(1), 1-5 (2012).
  10. J. Nastaj and B. Ambrozek, Modeling of drying of gaseous mixtures in TSA system with fixed bed of solid desiccants, Drying Technol., 30, 1062-1071 (2012). https://doi.org/10.1080/07373937.2012.685138
  11. J. Mehdi, J. S. Seyed, A. Javad, R. Alimrad, K. Hossein, R. F. Abbas, R. G. Mohammad, and G. Amir, The adsorption of benzene, toluene and xylenes (BTX) on the carbon nanostructures: The study of different parameters, Fresenius Environ. Bull., 20(4), 1036-1045 (2011).
  12. S. K. Kam, K. H. Kang, and M. G. Lee, Adsorption characteristics of acetone, benzene, and metylmercaptan by activated carbon prepared from waste citrus peel, Appl. Chem. Eng., 28(6), 663-669 (2017). https://doi.org/10.14478/ACE.2017.1074
  13. D. W. Cho, W. S. Kim, H. S. Chang, T. S. Jung, J. K. Park, and J. H. Park, Adsorption and desorption dynamics of CF4 on activated carbon beds: Validity of the linear driving force approximation for pressure-changing steps, Korean J. Chem. Eng., 34(11), 2922-2932 (2017). https://doi.org/10.1007/s11814-017-0181-3
  14. S. Ali and N. Ali, An Experimental and statistical model of a cyclic pressure swing adsorption column for hydrogen purification, Korean J. Chem. Eng., 34(3), 822-828 (2017). https://doi.org/10.1007/s11814-016-0314-0
  15. H. Danial and S. Akbar, Reliable estimation of adsorption isotherm parameters using adequate pore size distribution, Korean J. Chem. Eng., 32(5), 925-933 (2015). https://doi.org/10.1007/s11814-014-0294-x
  16. K. J. Oh, D. W. Park, S. S. Kim, and S. W. Park, Breakthrough data analysis of adsorption of volatile organic compounds on granular activated carbon, Korean J. Chem. Eng., 27(2), 632-638 (2010). https://doi.org/10.1007/s11814-010-0079-9
  17. X. Lin, Q. Huang, G. Qi, S. Shi, L. Xiong, C. Huang, X. Chen, H. Li, and X. Chen, Estimation of fixed-bed column parameters and mathematical modeling of breakthrough behaviors for adsorption of levulinic acid from aqueous solution using SY-01 resin, Sep. Purif. Technol., 174, 222-231 (2017). https://doi.org/10.1016/j.seppur.2016.10.016
  18. K. G. Jun, B. S. Ahn, and K. S. Yoo, Development of selective adsorption process with various pore size A-type zeolite on removal of acetylenes for isoprene purification, Appl. Chem. Eng., 21(5), 548-552 (2010).
  19. H. B. Adam and S. B. Abhoyjit, Comparing physisorption and chemisorption solid sorbents for use separating $CO_2$ from flue gas using temperature swing adsorption, Energy Procedia, 4, 562-567 (2011). https://doi.org/10.1016/j.egypro.2011.01.089
  20. D. H. Ko, M. Y. Kim, I. Moon, and D. K. Choi, Analysis of purge gas temperature in cyclic TSA process, Chem. Eng. Sci., 57(1), 179-195 (2002). https://doi.org/10.1016/S0009-2509(01)00358-X
  21. D. G. Lee, Y. J. Han, and C. H. Lee, Steam regeneration of acetone and toluene in activated carbon and dealujinated Y-zeolite beds, Korean J. Chem. Eng., 29(9), 1246-1252 (2012). https://doi.org/10.1007/s11814-012-0044-x
  22. K. T. Sloane and C. F. Rebecca, Systems Biology in Toxicology and Enviromental Health, 117-169, Academic Press, MA, USA (2015).
  23. D. R. Woods, Rules of Thumb in Engineering Practices, Weinheim: Wiley Verlag Publications, Germany, 118-119 (2007).
  24. K. S. Irfan, P. Pascaline, and J. A. Babu, Steam regeneration of adsorptions: An experinmental and technical review, Chem. Sci. Trans., 2(4), 1078-1088 (2013).
  25. D. Debasish, G. Vivekanand, and V. Nishith, Removal of volatile organic compound by activated carbon fiber, Carbon, 42, 2949-2962 (2004). https://doi.org/10.1016/j.carbon.2004.07.008
  26. B. Stephan, M. H. Manero, and J. N. Floussard, Mass transfer in VOC adsorption on zeolite: Experimental and theoretical breakthrough curves, Environ. Sci. Technol., 35, 3571 (2001). https://doi.org/10.1021/es010017x
  27. M. R. Douglas, F. Shamsuzzaman, and S. K. Kent, Pressure Swing Adsorption, 34-41, VCH Publishers, Germany (1994).
  28. Environmental Protection Agency, EPA Air Pollution Control Cost Manual, Office of Air Quality Planning and Standards, North Carolina, USA (2002).
  29. Environmental Protection Agency, Choosing an Adsorption System for VOC: Carbon, Zeolite, or Polymers, Office of Air Quality Planning and Standards, 7-8, North Carolina, USA (2001).