DOI QR코드

DOI QR Code

Optimization of the Extraction Process and Antioxidant Capacity of Coptis chinensis Franch Extract through Cluster Analysis

클러스터 분석을 이용한 황련 추출물 항산화 활성 최적화 추출공정

  • Fu, Minmin (Department of Fine Chemistry, Cosmetic R&D Center, Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology) ;
  • Xuan, Song Hua (Department of Fine Chemistry, Cosmetic R&D Center, Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology) ;
  • Park, Soo Nam (Department of Fine Chemistry, Cosmetic R&D Center, Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology)
  • 부민민 (서울과학기술대학교 정밀화학과, 나노바이오화장품연구실, 화장품종합기술연구소) ;
  • 현송화 (서울과학기술대학교 정밀화학과, 나노바이오화장품연구실, 화장품종합기술연구소) ;
  • 박수남 (서울과학기술대학교 정밀화학과, 나노바이오화장품연구실, 화장품종합기술연구소)
  • Received : 2018.06.26
  • Accepted : 2018.07.27
  • Published : 2018.10.10

Abstract

Coptis chinensis Franch is a valuable traditional oriental medicinal plant used for the treatment of various diseases. The major factors affecting the content of bioactive compounds and the relationship between bioactive compounds and antioxidant capacities of Coptis chinensis Franch were poorly understood. Thus, effects of the solvent, temperature, and extraction time on the extraction yields of bioactive compounds and the antioxidant activity of C. chinensis Franch extracts were investigated in this work. Our cluster analysis indicated that the hydroalcoholic solvent (50% ethanol : 50% water) at $35^{\circ}C$ for 30 min (extract time) was the best extraction condition for a factory use because the highest level of bioactive compounds and antioxidant activities was achieved. Multiple linear regression analysis revealed that total phenolic content (TPC) contributed to the 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) scavenging activity, while both total alkaloid content (TAC) and total flavonoid content (TFC) were responsible for ferric reducing antioxidant power (FRAP) activity. These results indicated that extraction conditions controlled the yield of bioactive compounds and the antioxidant activity of C. chinensis Franch, which can provide important information for the industrial extraction.

황련은 여러 가지 질병 치료에 사용되는 효과적인 전통약용식물이다. 하지만 황련 추출물의 생리활성성분 함량에 영향을 미치는 주요 인자 및 생리활성성분과 항산화 효능의 상관관계는 아직 알려지지 않았다. 따라서 본 논문에서는 용매, 온도 및 추출 시간이 황련 추출물의 생리 활성성분의 함량과 항산화 활성에 미치는 영향을 조사하였다. 클라스터를 이용하여 분석한 결과, $35^{\circ}C$에서 추출시간 30 min인 에탄올(50% 에탄올 : 50% 물) 조건으로 추출 시, 생리활성성분 함량 및 항산화 활성이 제일 높으므로 공장에서 사용하기에 가장 적합한 추출조건임을 확인하였다. 다중선형회귀분석 결과, 총 페놀화합물 함량은 DPPH소거 활성에 기여하였으며 총 알칼로이드 함량과 총 플라보노이드 함량은 FRAP활성에 기여하였다. 이상의 결과들로부터 황련의 추출 조건이 생리 활성 화합물의 수율 및 항산화 활성을 조절가능하며, 이는 공업적인 응용에 중요한 정보를 제공할 수 있을 것으로 사료된다.

Keywords

References

  1. M. Hayyan, M. A. Hashim, and I. M. AlNashef, Superoxide ion: generation and chemical implications, Chem. Rev., 116, 3029-3085 (2016). https://doi.org/10.1021/acs.chemrev.5b00407
  2. T. Devasagayam, J. Tilak, K. Boloor, K. S. Sane, S. S. Ghaskadbi, and R. Lele, Free radicals and antioxidants in human health: Current status and future prospects, J. Assoc. Physicians India, 52, 794-804 (2004).
  3. J. Nordberg and E. S. Arner, Reactive oxygen species, antioxidants, and the mammalian thioredoxin system1, Free Radical Biol. Med., 31, 1287-1312 (2001). https://doi.org/10.1016/S0891-5849(01)00724-9
  4. S. H. Xuan, Y. M. Park, J. H. Ha, Y. J. Jeong, and S. N. Park, The effect of dehydroglyasperin C on UVB-mediated MMPs expression in human HaCaT cells, Pharmacol. Rep., 69, 1224-1231 (2017). https://doi.org/10.1016/j.pharep.2017.05.012
  5. A. Shirwaikar, A. Shirwaikar, K. Rajendran, and I. S. R. Punitha, In vitro antioxidant studies on the benzyl tetra isoquinoline alka-loid berberine, Biol. Pharm. Bull., 29, 1906-1910 (2006). https://doi.org/10.1248/bpb.29.1906
  6. B. Liu, W. Li, Y. Chang, W. Dong, and L. Ni, Extraction of berberine from rhizome of Coptis chinensis Franch using supercritical fluid extraction, J. Pharm. Biomed. Anal., 41, 1056-1060 (2006). https://doi.org/10.1016/j.jpba.2006.01.034
  7. D. Yan, C. Jin, X.-H. Xiao, and X.-P. Dong, Antimicrobial properties of berberines alkaloids in Coptis chinensis Franch by microcalorimetry, J. Biochem. Biophys. Methods., 70, 845-849 (2008). https://doi.org/10.1016/j.jbbm.2007.07.009
  8. D. U. Lee, Y. J. Kang, M. K. Park, Y. S. Lee, H. G. Seo, T. S. Kim, C. H. Kim, and K. C. Chang, Effects of 13-alkyl-substituted berberine alkaloids on the expression of COX-II, TNF-${\alpha}$, iNOS, and IL-12 production in LPS-stimulated macrophages, Life Sci., 73, 1401-1412 (2003). https://doi.org/10.1016/S0024-3205(03)00435-1
  9. W. Kong, J. Wang, X. Xiao, S. Chen, and M. Yang, Evaluation of antibacterial effect and mode of Coptidis rhizoma by microcalorimetry coupled with chemometric techniques, Analyst, 137, 216-222 (2012). https://doi.org/10.1039/C1AN15826K
  10. D. Ding, Pharmacodynamic Action an Clinic of Chinese Medicinal Materials, 54-56, China Medicine Technology Press, Beijing, China (1999).
  11. H. Teng and Y. H. Choi, Optimization of ultrasonic-assisted extraction of bioactive alkaloid compounds from rhizoma coptidis (Coptis chinensis Franch.) using response surface methodology, Food Chem., 142, 299-305 (2014). https://doi.org/10.1016/j.foodchem.2013.06.136
  12. S. B. Lotito and B. Frei, Consumption of flavonoid-rich foods and increased plasma antioxidant capacity in humans: Cause, consequence, or epiphenomenon?, Free Radical Biol. Med., 41, 1727-1746 (2006). https://doi.org/10.1016/j.freeradbiomed.2006.04.033
  13. G. R. Schinella, H. A. Tournier, J. M. Prieto, P. Mordujovich de Buschiazzo, and J. L. Rios, Antioxidant activity of anti-inflammatory plant extracts, Life Sci., 70, 1023-1033 (2002). https://doi.org/10.1016/S0024-3205(01)01482-5
  14. P. Xu, Y. Gao, X. Zhang, L. Zhang, and K. Xu, Purification technology of total alkaloids from rhizoma coptidis, Lishizhen Med. Mater. Med. Res., 18, 3079-3080 (2007).
  15. M. F. Barroso, J. Noronha, C. Delerue-Matos, and M. Oliveira, Flavored waters: Influence of ingredients on antioxidant capacity and terpenoid profile by HS-SPME/GC-MS, J. Agric. Food Chem., 59, 5062-5072 (2011). https://doi.org/10.1021/jf1048244
  16. S. Chandler and J. Dodds, The effect of phosphate, nitrogen and sucrose on the production of phenolics and solasodine in callus cultures of Solanum laciniatum, Plant Cell Rep., 2, 205-208 (1983). https://doi.org/10.1007/BF00270105
  17. K. Shetty, O. F. Curtis, R. E. Levin, R. Witkowsky, and W. Ang, Prevention of vitrification associated with in vitro shoot culture of oregano. (Origanum vulgare) by Pseudomonas spp, J. Plant Physiol., 147, 447-451 (1995). https://doi.org/10.1016/S0176-1617(11)82181-4
  18. A. S. Costa, R. C. Alves, A. F. Vinha, S. V. Barreira, M. A. Nunes, L. M. Cunha, and M. B. P. Oliveira, Optimization of antioxidants extraction from coffee silverskin, a roasting by-product, having in view a sustainable process, Ind. Crops Prod., 53, 350-357 (2014). https://doi.org/10.1016/j.indcrop.2014.01.006
  19. I. F. Benzie and J. J. Strain, The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": The FRAP assay, Anal. Biochem., 239, 70-76 (1996). https://doi.org/10.1006/abio.1996.0292
  20. M. Pinelo, M. Rubilar, M. Jerez, J. Sineiro, and M. J. Nunez, Effect of solvent, temperature, and solvent-to-solid ratio on the total phenolic content and antiradical activity of extracts from different components of grape pomace, J. Agric. Food Chem., 53, 2111-2117 (2005). https://doi.org/10.1021/jf0488110
  21. Q. D. Do, A. E. Angkawijaya, P. L. Tran Nguyen, L. H. Huynh, F. E. Soetaredjo, S. Ismadji, and Y. H. Ju, Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica, J. Food Drug Anal., 22, 296-302 (2014). https://doi.org/10.1016/j.jfda.2013.11.001
  22. B. Sultana, F. Anwar, and M. Ashraf, Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts, Molecules, 14, 2167-2180 (2009). https://doi.org/10.3390/molecules14062167
  23. J. Peng, X. Han, Y. Xu, Y. Qi, L. Xu, and Q. Xu, New approach for application of high speed countercurrent chromatography coupled with direct injection of the powders of a raw material without any preparation, for isolation and separation of four alkaloids with high recoveries from coptis chinensis Franch, J. Liq. Chromatogr. Relat. Technol., 30, 2929-2940 (2007). https://doi.org/10.1080/10826070701588984
  24. L. Bravo, Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance, Nutr. Rev., 56, 317-333 (1998).
  25. K. K. W. Auyeung and J. K. S. Ko, Coptis chinensis inhibits hepatocellular carcinoma cell growth through nonsteroidal anti-inflammatory drug-activated gene activation, Int. J. Mol. Med., 24, 571-577 (2009).
  26. N. Deighton, R. Brennan, C. Finn, and H. V. Davies, Antioxidant properties of domesticated and wild Rubus species, J. Sci. Food Agric., 80, 1307-1313 (2000). https://doi.org/10.1002/1097-0010(200007)80:9<1307::AID-JSFA638>3.0.CO;2-P
  27. G. Schinella, H. Tournier, J. Prieto, P. M. De Buschiazzo, and J. Rios, Antioxidant activity of anti-inflammatory plant extracts, Life Sci., 70, 1023-1033 (2002). https://doi.org/10.1016/S0024-3205(01)01482-5
  28. M. H. Jang, H. Y. Kim, K. S. Kang, T. Yokozawa, and J. H. Park, Hydroxyl radical scavenging activities of isoquinoline alkaloids isolated from Coptis chinensis, Arch. Pharm. Res., 32, 341-345 (2009). https://doi.org/10.1007/s12272-009-1305-z

Cited by

  1. The Interrelationships between Intestinal Permeability and Phlegm Syndrome and Therapeutic Potential of Some Medicinal Herbs vol.11, pp.2, 2018, https://doi.org/10.3390/biom11020284
  2. Fatty acid composition, enzyme inhibitory effect, antioxidant and anticancer activity of extract from Saponaria prostrata WILLD. subsp. anatolica HEDGE vol.113, pp.None, 2018, https://doi.org/10.1016/j.bioorg.2021.105032