DOI QR코드

DOI QR Code

Sewage Sludge Treatment with Internal Recirculation and Diverse Pre-treatment Methods Using Combined Digestion Process

혼합 소화공정에서 내부반송과 다양한 전처리를 통한 하수 슬러지 처리

  • Ha, Jeong Hyub (Department of Integrated Environmental Systems, Pyeongtaek University) ;
  • Choi, Suk Soon (Department of Biological and Environmental Engineering, Semyung University) ;
  • Park, Jong Moon (Department of Chemical Engineering, Pohang University of Science and Technology)
  • 하정협 (평택대학교 환경융합시스템학과) ;
  • 최석순 (세명대학교 바이오환경공학과) ;
  • 박종문 (포스텍 화학공학과)
  • Received : 2018.07.30
  • Accepted : 2018.08.06
  • Published : 2018.10.10

Abstract

In this study, various influent sludge pre-treatment methods and the internal recirculation of thickened sludge from effluents using a liquid/solid separation unit were adopted to investigate their effects on the sludge digestion and methane production in a combined mesophilic anaerobic and thermophilic aerobic sludge digestion process. A lab-scale combined sludge digestion process was operated during 5 phases using different feed sludge pre-treatment strategies. In phase 1, the feed sludge was pre-treated with a thermal-alkaline method. In contrast, in phases 2, 3 and 4, the internal recirculation of thickened sludge from the effluent and thermal-alkaline, thermal, and alkaline pre-treatment (7 days) were applied to the combined process. In phase 5, the raw sludge without any pre-treatment was used to the combined process. With the feed sludge pre-treatment and internal recirculation, the experimental results indicated that the volatile suspended solid (VSS) removal was drastically increased from phases 1 to 4. Also, the methane production rate with the thermal-alkaline pre-treatment and internal recirculation was significantly improved, showing an increment to 285 mL/L/day in phase 2. Meanwhile, the VSS removal and methane production in phase 5 were greatly decreased when the raw sludge without any pre-treatment was applied to the combined process. Considering all together, it was concluded that the combined process with the thickened sludge recirculation and thermal-alkaline pre-treatment can be successfully employed for the highly efficient sewage sludge reduction and methane gas production.

본 연구에서는 유입 슬러지에 다양한 전처리 방법과 고액분리장치를 이용한 유출수의 잉여슬러지를 농축 후 내부반송을 적용하여, 중온혐기-고온호기 혼합 슬러지 처리 공정의 슬러지 소화효율과 메탄가스 생성량에 미치는 영향을 비교 검증하였다. 실험실 규모의 혼합 소화공정장치를 제작하여 서로 다른 유입 슬러지 전처리방법을 적용하여 5단계로 실험을 진행하였다. 1단계에서는 열-알칼리처리 전처리를 하여 슬러지를 공급하였고, 2, 3, 4단계에서는 유출수로부터 농축된 잉여슬러지의 내부반송과 각각 열-알칼리처리, 열처리, 알칼리 처리(7일)를 거친 유입 슬러지를 공급하였다. 마지막 5단계에서는 전처리를 하지 않은 슬러지를 공급하였다. 실험 결과, 1단계에서 4단계까지 진행되는 동안 Volatile Suspended Solid (VSS) 제거율은 유입 슬러지 전처리와 내부반송을 적용하는 경우 크게 증가하였으며, 메탄생성량 또한 2단계에서 슬러지 내부반송과 열-알칼리처리 전처리 적용의 경우 285 mL/L/day까지 크게 증가하였다. 한편, 5단계에서 전처리를 하지 않은 슬러지를 공급하였을 경우 VSS 제거율과 메탄 생성량이 크게 감소하였다. 결론적으로, 유입 슬러지의 열-알칼리처리 전처리와 유출수의 농축 잉여슬러지의 내부반송을 통해 복합 슬러지 처리 공정의 슬러지 제거 효율과 메탄생성량을 크게 증가시킬 수 있었다.

Keywords

References

  1. H. W. Cho, S. K. Park, J. H. Ha, and J. M. Park, An innovative sewage sludge reduction by using a combined mesophilic anaerobic and thermophilic aerobic process with thermal-alkaline treatment and sludge recirculation, J. Environ. Manag., 129, 274-282 (2013). https://doi.org/10.1016/j.jenvman.2013.07.009
  2. J. H. Ha and J. M. Park, Simultaneous treatment of sewage sludge and food wastewater using combined digestion process, Appl. Chem. Eng., 24(3), 279-284 (2017).
  3. G. Parkin and W. F. Owen, Fundamental of anaerobic digestion of wastewater sludge, J. Environ. Eng., 112, 867-920 (1986). https://doi.org/10.1061/(ASCE)0733-9372(1986)112:5(867)
  4. S. K. Park, H. M. Jang, J. H. Ha, and J. M. Park, Sequential sludge digestion after diverse pre-treatment conditions: Sludge removal, methane production and microbial community changes, Bioresour. Technol., 162, 331-340 (2014). https://doi.org/10.1016/j.biortech.2014.03.152
  5. S. Liu, N. Zhu, and L. Y. Li, The one-stage autothermal thermophilic aerobic digestion for sewage sludge treatment, Chem. Eng. J., 174, 564-570 (2011). https://doi.org/10.1016/j.cej.2011.09.043
  6. A. Elliot and T. Mahmood, Pretreatment technologies for advancing anaerobic digestion of pulp and paper biotreatment residues, Water Res., 41, 4273-4286 (2007). https://doi.org/10.1016/j.watres.2007.06.017
  7. J. Kim, C. Park, T. H. Kim, M. Lee, S. Kim, S. W. Kim, and J. Lee, Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge, J. Biosci. Bioeng., 95(3), 271-275 (2003). https://doi.org/10.1016/S1389-1723(03)80028-2
  8. J. E. Alleman and T. M. Lapara, Thermophilic aerobic biological wastewater treatment, Wat. Res., 33(4), 895-908 (1999). https://doi.org/10.1016/S0043-1354(98)00282-6
  9. M. N. Layden, D. C. Mavinic, H. G. Kelly, and R. Moles, Autothermal thermophilic aerobic digestion (ATAD)-Part I: Review of origins, design, and process operation, J. Environ. Eng. Sci., 6, 665-678 (2007). https://doi.org/10.1139/S07-015
  10. H. M. Jang, J. H. Ha, M. S. Kim, J. O. Kim, Y. M. Kim, and J. M. Park, Effect of increased load of high-strength food wastewater in thermophilic and mesophilic anaerobic co-digestion of waste activated sludge on bacterial community structure, Water Res., 99, 140-148 (2016). https://doi.org/10.1016/j.watres.2016.04.051
  11. APHA, Standard Methods for the Examination of water and Wastewater, 20th ed., American Public Health Association (APHA), Washington DC, USA (1998).
  12. H. M. Jang, S. K. Park, J. H. Ha, and J. M. Park, Microbial community structure in a thermophilic aerobic digester used as a sludge pretreatment process for the mesophilic anaerobic digestion and the enhancement of methane production, Bioresour. Technol., 145, 80-89 (2013). https://doi.org/10.1016/j.biortech.2013.01.094
  13. H. M. Jang, S. S. Choi, J. H. Ha, and J. M. Park, Influence of food wastewater loading rate on the reactor performance and stability in the thermophilic aerobic process, Appl. Chem. Eng., 24(3), 279-284 (2013).
  14. H. M. Jang, J. H. Ha, J. M. Park, M. S. Kim, and S. G. Sommer, Comprehensive microbial analysis of combined mesophilic anaerobic-thermophilic aerobic process treating high-strength food wastewater, Water Res., 73, 291-303 (2015). https://doi.org/10.1016/j.watres.2015.01.038
  15. S. H. Lee, H. J. Kang, Y. H. Lee, T. J. Lee, K. Han, Y. Choi, and H. D. Park, Monitoring bacterial community structure and variability in time scale in full-scale anaerobic digesters, J. Environ. Monit., 14(7), 1893-1905 (2012). https://doi.org/10.1039/c2em10958a
  16. K. R. Pagilla, H. Kim, and T. Cheunban, Aerobic thermophilic and anaerobic mesophilic treatment of swine waste, Water Res., 34(10), 2747-2753 (2000). https://doi.org/10.1016/S0043-1354(00)00012-9
  17. A. G. Vlyssides and P. K. Karlis, Thermal-alkaline solubilization of waste activated sludge as a pre-treatment stage for anaerobic digestion, Bioresour. Technol., 91, 201-206 (2004). https://doi.org/10.1016/S0960-8524(03)00176-7
  18. D. Sasaki, T. Hori, S. Harta, Y. Ueno, M. Ishii, and Y. Igarashi, Methanogenic pathway and community structure in a thermophilic anaerobic digestion process of organic solid waste, J. Biosci. Eioeng., 111(1), 41-46 (2011). https://doi.org/10.1016/j.jbiosc.2010.08.011