DOI QR코드

DOI QR Code

Analysis of Heat Transfer Performance of Oxi-nitriding Surface during Droplet Evaporation

산질화 표면에서의 액적 증발 열전달 성능 분석

  • Received : 2019.10.29
  • Accepted : 2019.12.08
  • Published : 2019.12.30

Abstract

In general, the oxi-nitriding method is well known as such a surface treatment way for substantial enhancement in corrosion resistance, even comparable to that of titanium. However, there are still lacks of information on thermal performance of the oxi-nitriding surface being of additional compound layers on the base substrate. Above all, the quantitative measurement of its thermal performance still was not evaluated yet. Thus, the present study experimentally measures the thermal resistance of the oxi-nitriding surface during droplet evaporation and then estimates heat transfer performance with the use of the onedimensional heat transfer model in vertical direction. From the experimental results, it is found that the total evaporation time slightly increased with the thermal resistance caused by the oxi-nitriding layer, showing a maximum difference of approximately 20% with that of the bare surface. Although the heat transfer performance of oxi-nitriding surface became slightly lower than that of the bare surface, the oxi-nitriding surface exhibits much better heat transfer performance compared to titanium.

Keywords

References

  1. M. A. J. Somers, B. J. Kooi, L. Maldzinski, E. J. Mittemeijer, A. A. Van der horst, A. M. Van der Kraan, N. M. Van der pers, "Thermodynamics and long-range order of interstitials in an h.c.p. lattice: nitrogen in ${\varepsilon}$-Fe2N1-z", Acta Materialia, Vol. 45, 1997, pp. 2013-2025. https://doi.org/10.1016/S1359-6454(96)00307-2
  2. E. J. Mittemeijer, M. A. J. Somers, "Thermodynamics, kinetics, and process control of nitriding", Surface Engineering, Vol. 13, No. 6, 1997, pp. 483-497. https://doi.org/10.1179/sur.1997.13.6.483
  3. K. Funatani, "Heat treatment of automotive components: current status and future trends", Transactions of the Indian Institute of Metals, Vol. 57, No. 4, 2004, pp. 381-396.
  4. W. P. Tong, N. R. Tao, Z. B. Wang, J. Lu, K. Lu, "Nitriding iron at lower temperatures", Science, Vol. 299, No. 5607, 2003, pp. 686-688. https://doi.org/10.1126/science.1080216
  5. A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S. J. Dowey, "Plasma electrolysis for surface engineering", Surface and Coatings Technology, Vol. 122 No. 2-3, 1999, pp. 73-93. https://doi.org/10.1016/S0257-8972(99)00441-7
  6. M. Arai, H. Ochiai, T. Suidzu, "A novel low-thermal-conductivity plasma-sprayed thermal barrier coating controlled by large pores", Surface and Coatings Technology, Vol. 285, 2016, pp. 120-127. https://doi.org/10.1016/j.surfcoat.2015.11.022
  7. S. S. Akhtar, A. A. Abubakar, A. F. M. Arif, "Prediction of residual stresses during gas nitriding of H13 steels using phase field approach", Journal of Manufacturing Science and Engineering, Transactions of the ASME, Vol. 138, No. 1, 2016, pp. 011008. https://doi.org/10.1115/1.4030755
  8. M. N. Rahaman, J. R. Gross, R. E. Dutton, H. Wang, "Phase stability, sintering, and thermal conductivity of plasma-sprayed ZrO2-Gd2O3 compositions for potential thermal barrier coating application", Acta Materialia, Vol. 54, 2006, pp. 1615-1621. https://doi.org/10.1016/j.actamat.2005.11.033
  9. D. H. Shin, C. K. Choi, Y. T. Kang, S. H. Lee, "Local aggregation characteristics of a nanofluid droplet during evaporation", International Journal of Heat and Mass Transfer, Vol. 72, 2014, pp. 336-344. https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.023
  10. R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, T. A. Witten, "Contact line deposits in an evaporating drop", Physical Review E, Vol. 62, No. 1, 2000, pp. 756-765. https://doi.org/10.1103/PhysRevE.62.756
  11. H. Hu and R. G. Larson, "Evaporation of a sessile droplet on a substrate", Journal of Physical Chemistry B, Vol. 106, No. 6, 2002, pp. 1334-1344. https://doi.org/10.1021/jp0118322
  12. R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, T. A. Witten, "Capillary flow as the cause of ring stains from dried liquid drops", Nature, Vol. 389, 1997, pp. 827-829. https://doi.org/10.1038/39827
  13. J. M. Stauber, S. K. Wilson, B. R. Duffy, "Evaporation of droplets on strongly hydrophobic substrates", Langmuir, Vol. 31, No. 12, 2015, pp. 3653-3660. https://doi.org/10.1021/acs.langmuir.5b00286
  14. M. E. R. Shanahan, K. Sefiane, "Kinetics of triple line motion during evaporation", Contact Angle, Wettability and Adhesion, 6th edition, 2009, pp. 19-31.
  15. R. Enright, N. Miljkovic, N. Dou, Y. Nam, E.N. Wang, "Condensation on superhydrophobic copper oxide nanostructures", Journal of Heat Transfer, Vol. 135, 2013, pp. 091304. https://doi.org/10.1115/1.4024424
  16. W. Choi, A. Tuteja, J. M. Mabry, R. E. Cohen, G. H. Mckinley, "A modified Cassie-Baxter relationship to explain contact angle hysteresis and anisotropy on nonwetting textured surfaces," Journal of Colloid Interface Science, Vol. 339, No.1, 2009, pp. 208-216. https://doi.org/10.1016/j.jcis.2009.07.027
  17. J. W. Gibbs, H. A. Bumstead, R. G. Van Name, The scientific papers of J. Willard Gibbs, Longmans, Green and Co., New York, 1906.
  18. V. P. Carey, Liquid-vapor phase-change phenomena, Taylor & Francis Group, LLC, New York, 2008.
  19. S. Kim, K. J. Kim, "Dropwise condensation modeling suitable for superhydrophobic surfaces," ASME J. Heat Transfer, Vol. 133, No. 8, 2011, pp. 081502. https://doi.org/10.1115/1.4003742