DOI QR코드

DOI QR Code

Impacts assessment of Climate changes in North Korea based on RCP climate change scenarios II. Impacts assessment of hydrologic cycle changes in Yalu River

RCP 기후변화시나리오를 이용한 미래 북한지역의 수문순환 변화 영향 평가 II. 압록강유역의 미래 수문순환 변화 영향 평가

  • Jeung, Se Jin (Department of Urban Environment & Disaster Management, Kangwon National University) ;
  • Kang, Dong Ho (Department of Urban Environment & Disaster Management, Kangwon National University) ;
  • Kim, Byung Sik (Department of Urban Environment & Disaster Management, Kangwon National University)
  • 정세진 (강원대학교 방재전문대학원 도시환경&재난관리전공) ;
  • 강동호 (강원대학교 방재전문대학원 도시환경&재난관리전공) ;
  • 김병식 (강원대학교 방재전문대학원 도시환경&재난관리전공)
  • Received : 2019.10.05
  • Accepted : 2019.11.22
  • Published : 2019.12.30

Abstract

This study aims to assess the influence of climate change on the hydrological cycle at a basin level in North Korea. The selected model for this study is MRI-CGCM 3, the one used for the Coupled Model Intercomparison Project Phase 5 (CMIP5). Moreover, this study adopted the Spatial Disaggregation-Quantile Delta Mapping (SDQDM), which is one of the stochastic downscaling techniques, to conduct the bias correction for climate change scenarios. The comparison between the preapplication and postapplication of the SDQDM supported the study's review on the technique's validity. In addition, as this study determined the influence of climate change on the hydrological cycle, it also observed the runoff in North Korea. In predicting such influence, parameters of a runoff model used for the analysis should be optimized. However, North Korea is classified as an ungauged region for its political characteristics, and it was difficult to collect the country's runoff observation data. Hence, the study selected 16 basins with secured high-quality runoff data, and the M-RAT model's optimized parameters were calculated. The study also analyzed the correlation among variables for basin characteristics to consider multicollinearity. Then, based on a phased regression analysis, the study developed an equation to calculate parameters for ungauged basin areas. To verify the equation, the study assumed the Osipcheon River, Namdaecheon Stream, Yongdang Reservoir, and Yonggang Stream as ungauged basin areas and conducted cross-validation. As a result, for all the four basin areas, high efficiency was confirmed with the efficiency coefficients of 0.8 or higher. The study used climate change scenarios and parameters of the estimated runoff model to assess the changes in hydrological cycle processes at a basin level from climate change in the Amnokgang River of North Korea. The results showed that climate change would lead to an increase in precipitation, and the corresponding rise in temperature is predicted to cause elevating evapotranspiration. However, it was found that the storage capacity in the basin decreased. The result of the analysis on flow duration indicated a decrease in flow on the 95th day; an increase in the drought flow during the periods of Future 1 and Future 2; and an increase in both flows for the period of Future 3.

본 논문의 목적은 기후변화가 북한지역에서 유역규모의 수문순환에 미치는 영향을 평가하는데 있다. 먼저, CMIP5(Coupled Model Intercomparison Project Phase 5)의 모형인 MRI-CGCM3모델을 선택하였으며, 추계학적 축소기법의 하나인 SDQDM(Spatial Disaggregation-Quantile Delta Mapping)기법을 이용하여 기후변화시나리오 자료를 편의보정 하였다. 또한 관측치와 SDQDM 기법의 적용 전·후의 비교를 통해 SDQDM기법의 타당성을 검토하였다. 또한 기후변화에 따른 극한기후가 북한의 유역규모 수문순환과 유출에 미치는 영향을 평가하고자 한다. 일반적으로 기후변화에 따른 수문순환을 전망하기에 앞서 분석에 사용되는 유출모형의 매개변수 최적화가 우선적으로 수행되어야 하지만 북한지역은 정치적 이유로 인해 미계측 유역으로 분류되어 있어 관측 유출량 자료를 확보하기 어렵다. 따라서 본 논문에서는 양질의 유출량자료가 있는 남한의 16개 유역을 대상으로 M-RAT모형의 최적 매개변수를 산정하였다. 또한 유역특성변수 간 상관분석을 통해 다중공선성을 고려하였고, 단계적 회귀분석을 통해 미계측 유역에 적용 할 수 있는 매개변수 추정식을 산정하였다. 매개변수 추정식의 검증을 위해 남한의 오십천, 남대천, 용담댐, 영강 유역을 미계측 유역이라고 가정하고 교차검증을 수행한 결과 4개 유역 모두 효율계수 NSE가 0.8이상으로 높은 효율성을 확인하였다. 본 논문에서는 기후변화시나리오와 추정된 유출모형의 매개변수를 이용하여 북한의 압록강 유역의 기후변화에 따른 유역규모의 수문순환과정의 변화를 평가하였다. 분석 결과, 기후변화시 강수량이 증가하였고, 기온상승으로 인해 증발산량의 증가되는 것으로 전망되었고, 유역 내 유역 저류량은 감소하는 것을 확인하였다. 유황 분석결과 Future 1, 2 기간에 풍수량은 증가하고, 갈수량이 감소하고 Future 3 기간에 풍수량과 갈수량이 증가하는 것으로 전망되었다.

Keywords

References

  1. Abatzoglou J.T., Brown T.J. (2012). A Comparison of Statistical Downscaling Methods Suited for Wildfire Applications. International Journal of Climatology. Vol. 32, No. 5, pp. 772-780. https://doi.org/10.1002/joc.2312
  2. Burger G., Sobie S. R., Cannon A. J. , Werner A. T. , and Murdock T. Q. (2013). Downscaling extremes: an Intercomparison of multiple methods for future climate. Journal of Climate, Vol. 26, pp. 3429-3449. https://doi.org/10.1175/JCLI-D-12-00249.1
  3. Cannon. A.J., Sobie S.R., Murdock T.Q. (2015). Biascorrection of GCM precipitation by quantile mapping: how well do methods preserve changes in quantiles and extremes?. Journal of Climate, Vol. 28, pp. 6938-6959. https://doi.org/10.1175/JCLI-D-14-00754.1
  4. Cho, J.P., Jung, I.G., Cho, W.I., Hwang, S.H. (2018). User-Centered Climate Change Scenarios Technique Development and Application of Korean Peninsula. The Journal of Climate Change Research. Vol. 9, No. 1, pp. 13-29. https://doi.org/10.15531/ksccr.2018.9.1.13
  5. Eum, H. I., Alex J. Cannon (2017). Intercomparison of projected changes in climate extremes for South Korea: application of trend preserving statistical downscaling methods to the CMIP5 ensemble. INTERNATIONAL JOURNAL OF CLIMATOLOGY, Vol. 37, No. 8, pp. 3381-3397. https://doi.org/10.1002/joc.4924
  6. Index for Risk Management INFORM Concept and Methodology Report - Version 2018. European Union.
  7. IPCC (2007), "Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovern mental Panel on Climate Change" [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  8. IPCC (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland.
  9. Jo, J.H. (2017). Evaluation of the Capacity for Water Resources Facilities and Analysis of the Development Probability in North Korea. Master's thesis, Seokyeong University.
  10. Korea Environment Institute. (2008). Estimation of Flood Vulnerable Areas in North Korea and Collaboration Strategies between South Korea and North Korea.
  11. K-water. (1994). Current Status and Development Trends of North Korean Water Resources.
  12. K-water. (1998). North Korea Water Resources Survey.
  13. K-water. (2003). A Study on the Prospect and Participation Plan of Water Resources Industry in North Korea.
  14. K-water. (2005). Study on North Korean Hydropower Project.
  15. K-water. (2007). Basic Research on North Korean Flood Prevention Cooperation.
  16. Ministry of Environment. (2010). Development of an ecosystem model for change prediction and management technique of vulnerable areas by climate change.
  17. Ministry of Land, Infrastructure and Environment. (2015). National Strategy and Action Plan of Agriculture in the Democratic People's Republic of Korea, Democratic People's Republic of Korea.
  18. Park, M.R. (2015). Analysis of water resource condition and potential hydropower in North Korea. Master's thesis, Seokyeong University.
  19. Son, K.W. (2006). Inter-Korean Shared River Exchange and Cooperation Plan. Korea Institute for National Unification.
  20. Vandewiele, G. L., Xu, C-Y., Win, N.L. (1993). Methodlogy and comparative study of monthly water balance models in Belguim, China and Burma. Journal of Hydrology. Vol. 134, pp. 315-347. https://doi.org/10.1016/0022-1694(92)90041-S
  21. Wood A.W., Leung L. R., Sridhar V, Lettenmaier D.P. (2004). Hydrologic Implications of Dynamical and Statistical Approachs to Dwonscaling Climate Model Outputs. Climatic Change. Vol. 62, pp. 189-216. https://doi.org/10.1023/b:clim.0000013685.99609.9e
  22. Xu C. Y., Seibert J., Halldin S. (1996). Regional water balance modeling in the NOPEX area: development and application of monthly water balance models. Journal of Hydrology, Vol. 180, No. 1, pp. 211-236. https://doi.org/10.1016/0022-1694(95)02888-9
  23. Yun, Z.W. (2008). Reconstruction of North Korean Water Infrastructure: Present Status and Future Challenge.