DOI QR코드

DOI QR Code

Thermoelectric Properties of the Reaction Sintered n-type β-SiC

반응소결법으로 제조한 n형 β-SiC의 열전특성

  • Pai, Chul-Hoon (Division of Bio-Engineering, Incheon National University)
  • 배철훈 (인천대학교 생명공학부)
  • Received : 2018.12.11
  • Accepted : 2019.03.08
  • Published : 2019.03.31

Abstract

Silicon carbide is considered to be a potentially useful material for high-temperature electronic devices, as its large energy band gap and the p-type and/or n-type conduction can be controlled by impurity doping. Particularly, electric conductivity of porous n-type SiC semiconductors fabricated from ${\beta}-SiC$ powder at $2000^{\circ}C$ in $N_2$ atmosphere was comparable to or even larger than the reported values of SiC single crystals in the temperature region of $800^{\circ}C$ to $1000^{\circ}C$, while thermal conductivity was kept as low as 1/10 to 1/30 of that for a dense SiC ceramics. In this work, for the purpose of decreasing sintering temperature, it was attempted to fabricate porous reaction-sintered bodies at low temperatures ($1400-1600^{\circ}C$) by thermal decomposition of polycarbosilane (PCS) impregnated in n-type ${\beta}-SiC$ powder. The repetition of the impregnation and sintering process ($N_2$ atmosphere, $1600^{\circ}C$, 3h) resulted in only a slight increase in the relative density but in a great improvement in the Seebeck coefficient and electrical conductivity. However the power factor which reflects the thermoelectric conversion efficiency of the present work is 1 to 2 orders of magnitude lower than that of the porous SiC semiconductors fabricated by conventional sintering at high temperature, it can be stated that thermoelectric properties of SiC semiconductors fabricated by the present reaction-sintering process could be further improved by precise control of microstructure and carrier density.

SiC는 큰 에너지 밴드 갭을 갖고, 불순물 도핑에 의해 p형 및 n형 전도의 제어가 용이해서 고온용 전자부품 소재로 활용이 가능한 재료이다. 특히 $N_2$ 분위기, $2000^{\circ}C$에서 ${\beta}-SiC$ 분말로부터 제조한 다공질 n형 SiC 반도체의 경우, $800{\sim}1000^{\circ}C$에서의 도전율 값이 단결정 SiC와 비교해서 비슷하거나 오히려 높은 값을 나타내었으며, 반면에 열전도율은 치밀한 SiC 세라믹스와 비교시 1/10~1/30 정도로 낮은 값을 나타내었다. 본 연구에서는 소결온도를 낮추기 위해 n형 ${\beta}-SiC$에 함침 시킨 polycarbosilane (PCS)의 열분해에 의한 반응소결 공정 ($1400{\sim}1600^{\circ}C$)으로 다공질 소결체를 제작하였다. 함침 및 소결공정($N_2$ 분위기, $1600^{\circ}C$, 3시간)을 반복함에 따라 상대밀도는 크게 증가하지 않았지만 Seebeck 계수 및 도전율은 크게 증가하였다. 본 연구에서의 열전변환 효율을 반영하는 power factor는 고온에서 상압소결 공정으로 제작한 다공질 SiC 반도체에 비해 1/100~1/10 정도 작게 나타났지만, 미세구조 및 캐리어 밀도를 정밀하게 제어하면, 본 연구에서의 반응소결 공정으로 제작한 SiC 반도체의 열전물성은 크게 향상될 것으로 판단된다.

Keywords

SHGSCZ_2019_v20n3_29_f0001.png 이미지

Fig. 1. Schematic diagram of the apparatus for electrical conductivity and the Seebeck coefficient measurements. 1.Specimen, 2.Silicon rubber, 3.Voltmeter, 4.DC current source, 5.Thermocouple, 6.Alumina tube, 7.Gas inlet, 8.Gas outlet, 9.Air inlet, and 10.Air outlet.

SHGSCZ_2019_v20n3_29_f0002.png 이미지

Fig. 2. XRD patterns of n-type β-SiC powder and products obtained by pyrolyzing PCS at various temperatures for 3h under N2.

SHGSCZ_2019_v20n3_29_f0003.png 이미지

Fig. 3. SEM micrographs of the polished surface of specimen S. (a) low-magnification, (b) high-magnification

SHGSCZ_2019_v20n3_29_f0004.png 이미지

Fig. 4. Temperature dependence of the Seebeck coefficient.

SHGSCZ_2019_v20n3_29_f0005.png 이미지

Fig. 5. SEM micrographs of the fracture surface of specimens. (a) specimen S1, (b) specimen S2

SHGSCZ_2019_v20n3_29_f0006.png 이미지

Fig. 6. Temperature dependence of electrical conductivity.

SHGSCZ_2019_v20n3_29_f0007.png 이미지

Fig. 7. Temperature dependence of the power factor.

References

  1. Y. Suga(Ed.), Thermoelectric Semiconductors, p. 295-355, MakiShyoten, 1966.
  2. D. M. Rowe and C. M. Bjandari, Modern Thermoelectrics, p. 35-48, Holt, Rinehart and Winston Ltd., 1983.
  3. I. B. Cadoff and E. Miller, Thermoelectric Materials and Devices, p. 178-183, Chapman and Hall Ltd., 1960. DOI: https://dx.doi.org/10.1063/1.3057558
  4. K. Uemura and I. Nishida, Thermoelectric Semiconductors and Their Applications, p. 1-11, Nikkan Kogyo Shinbun, 1988.
  5. K. Koumoto, C. H. Pai, S. Takeda, and H. Yanagida, "Microstructure-controlled Porous SiC Ceramics for High-temperature Thermoelectric Energy Conversion", Proc. of the 8th Inter. Conf. on Thermoelectric Energy Conversion (Nancy), pp. 107-112, 1989.
  6. C. H. Pai, Y. Sasaki, K. Koumoto, and H. Yanagida, "Reaction Sintering of Polycarbosilane-Impregnated Compact of Silicon Carbide Hollow Particles and the Resultant Thermoelectric Properties", J. Am. Ceram. Soc., 74[11], pp. 2922-2924, 1991. DOI: https://doi.org/10.1111/j.1151-2916.1991.tb06864.x
  7. J. E. Parrott, "Some Contributions to the Theory of Electrical Conductivity, Thermal Conductivity, and Thermoelectric Power in Semiconductors", Proc. Phys. Soc., pp. 590-607, 1957.
  8. W. S. SEO, C. H. Pai, K. Koumoto, and H. Yanagida, "Microstructure Development and Stacking Fault Annihilation in ${\beta}$-SiC Powder Compact", J. Ceram. Soc. Jpn., 99[6], pp. 443-447, 1991. DOI: https://dx.doi.org/10.2109/jcersj.99.443
  9. J. Y. W. Seto, "The Electrical Properties of Polycrystalline Silicon Films," J. Appl. Phys., 46[12], pp.5247-5254, 1975. DOI: https://dx.doi.org/10.1063/1.321593
  10. C. H. Seager and T. G. Castner, "Zero-bias Resistance of Grain Boundaries in Neutron-transmutation-doped Polycrystalline," J. Appl. Phys., 49[7], pp. 3879-3889, 1978. DOI: https://dx.doi.org/10.1063/1.325394
  11. M. L. Tarng, "Carrier Transport in Oxygen-rich Polycrystalline Silicon Films," J. Appl. Phys., 49[7], pp. 4069-4076, 1978. DOI: https://dx.doi.org/10.1063/1.325367
  12. G. Baccarani, B. Ricco, and G. Spadini, "Transport Properties of Polycrystalline Silicon Films," J. Appl. Phys., 49[11], pp. 5565-5570, 1978. DOI: https://dx.doi.org/10.1063/1.324477
  13. J. Y. M. Lee and I. C. Cheng, "Electrical Properties of Lightly Doped Polycrystalline Silicon," J. Appl. Phys., 53[1], pp. 490-495, 1980. DOI: https://dx.doi.org/10.1063/1.329952