DOI QR코드

DOI QR Code

Evaluation of Lateral Load Resistance and Heating/Cooling/Lighting Energy Performance of a Post-disaster Refugees Housing Using Lightweight composite Panels

경량 복합패널을 활용한 구호주거의 횡하중 저항성능 및 냉난방조명 에너지성능 평가

  • Hwang, Moon-Young (Department of Architectural Engineering, Chungbuk National University) ;
  • Lee, Byung-Yun (Department of Architecture, Chungbuk National University) ;
  • Kang, Su-Min (Department of Architectural Engineering, Chungbuk National University) ;
  • Kim, Sung-Tae (Axia Materials CO., LTD.)
  • Received : 2018.12.26
  • Accepted : 2019.03.08
  • Published : 2019.03.31

Abstract

Following the earthquake in Gyeongju (2016) and Pohang (2017), South Korea is no longer a safe place for earthquakes. Accordingly, the need for shelters suitable for disaster environments is increasing. In this study, a lightweight composite panel was used to produce post-disaster housing for refugees to compensate for the disadvantages of existing evacuation facilities. For this purpose, an evaluation of structural performance and thermal environment for post-disaster housing for refugees composed of lightweight composite panels was performed. To assess the structural performance, a lateral loading test was conducted on a system made of lightweight composite panels. The specimens consisted of two types, which differed according to the bonding method, as a variable. In addition, the seismic and wind loads were calculated in accordance with KBC 2016 and compared with the experimental results. Regarding the energy performance, optimization of south-facing window planning and window-wall ratio and solar heat gain coefficient were analyzed to minimize heating, cooling, and lighting energy. As a result, the specimens composed of lightweight composite panels will perform sufficiently safely for lateral loads and the optimized window planning will lead to a low-energy operation.

2016년 경주 지진에 이어 2017년 포항 지진까지 발생한 대한민국은 더 이상 지진에 대해 안전지대라고 할 수 없다. 이에 따라 재난환경에 적합한 피난시설의 필요성이 증대되고 있다. 본 연구에서는 경량 복합패널을 이용하여 기존 피난시설의 단점들을 보완할 수 있는 구호주거를 제작하고자 하였다. 이를 위해 경량 복합패널로 구성된 구호주거에 대한 구조 성능과 에너지성능을 평가하고자 하였다. 구호주거의 구조 성능을 평가하기 위해 경량 복합패널로 제작한 시스템에 대한 횡하중가력 실험을 진행하였다. 실험체는 접합 방식을 변수로 하여 2가지로 구성하였다. 또한 KBC 2016에 따라 실험체에 대한 지진하중과 풍하중을 산정하여 실험 결과와 비교하였다. 에너지성능은 냉난방 및 조명에너지 사용량을 최소화하기 위해 기준 패널을 활용한 남측창호 최적화기법을 활용하여 분석하였고, 창면적비, 창 총일사취득율 최적화를 진행하였다. 결과적으로 경량 복합패널로 제작된 실험체는 횡하중에 대해 충분히 안전한 성능을 보일 것으로 판단되며, 창면적비 0.38, 총일사취득율 0.5수준의 최적화 계획을 통한 저에너지 운용이 기대된다.

Keywords

SHGSCZ_2019_v20n3_252_f0001.png 이미지

Fig. 1. Panel configuration[4]

SHGSCZ_2019_v20n3_252_f0002.png 이미지

Fig. 2. Specimens section

SHGSCZ_2019_v20n3_252_f0003.png 이미지

Fig. 3. Specimen size

SHGSCZ_2019_v20n3_252_f0004.png 이미지

Fig. 4. Camlock(R2-0267-02, R2-0268-02)[13]

SHGSCZ_2019_v20n3_252_f0005.png 이미지

Fig. 5. Cam lock connection method

SHGSCZ_2019_v20n3_252_f0006.png 이미지

Fig. 6. Specimen setting detail

SHGSCZ_2019_v20n3_252_f0007.png 이미지

Fig. 7. Fixing detail of specimen

SHGSCZ_2019_v20n3_252_f0008.png 이미지

Fig. 8. Specimen setup

SHGSCZ_2019_v20n3_252_f0009.png 이미지

Fig. 9. Load-displacement of "F" specimen

SHGSCZ_2019_v20n3_252_f0010.png 이미지

Fig. 10. Failure at bottom of "F" specimen

SHGSCZ_2019_v20n3_252_f0011.png 이미지

Fig. 11. Load-displacement of cam lock specimen

SHGSCZ_2019_v20n3_252_f0012.png 이미지

Fig. 12. Failure at bottom of cam lock specimen

SHGSCZ_2019_v20n3_252_f0013.png 이미지

Fig. 13. Prototype Plan of Proposed Refuge House

SHGSCZ_2019_v20n3_252_f0014.png 이미지

Fig. 14. Prototype Elevation of Proposed Refuge House

SHGSCZ_2019_v20n3_252_f0015.png 이미지

Fig. 15. Flow Chart of Optimization for Refuge House

SHGSCZ_2019_v20n3_252_f0016.png 이미지

Fig. 16. Pearson Corelation Chart among Variables

SHGSCZ_2019_v20n3_252_f0017.png 이미지

Fig. 17. Parrallel Coordinates Chart among Variables

Table 1. Material properties for structural components[3]

SHGSCZ_2019_v20n3_252_t0001.png 이미지

Table 2. Experimental variables

SHGSCZ_2019_v20n3_252_t0002.png 이미지

Table 3. Lateral loads at specimens

SHGSCZ_2019_v20n3_252_t0003.png 이미지

Table 4. Input Range of Control Variables

SHGSCZ_2019_v20n3_252_t0004.png 이미지

References

  1. Korea Meteorological Administration, Earthquakes Occurring in Korea, 2017, http://www.weather. go.kr/weather/earthquake_volcano/domestictrend.jsp, (accessed Dec. 2018)
  2. Ashland Inc., Technical Datasheet Ashland Specialty Ingredients $ISOGRIP^{TM}$ SP 3030D Adhesive, Ashland Inc. 2010.
  3. Axia Materials Co., Ltd., Structural Properties of LitePan(R) Panel, p.10-12, Axia Materials Co., Ltd., 2015.
  4. B. Yeh, T. Williamson, E. Keith, Development of Structural Insulated Panel Standards, ASCE, Structures Congress 2008, 2008.
  5. U.S. Department of Housing and Urban Development, Prescriptive Method for Structural Insulated Panels(SIPs) Used in wall systems in residential construction, pp. 1-40, Office of Policy Development and Research, 2007.
  6. H. Nah, H. Lee, C. Lee, S. Hwang, H. Jo, S. Choi, "Evaluation on Structural Performance of Structural Insulated Panels in Wall Application", J. Korean Soc. Adv. Comp. Strus., Vol. 3, No. 2, pp. 19-27, 2012. DOI: https://doi.org/10.11004/kosacs.2012.3.2.019
  7. H. Nah, H. Lee, S. Choi, "Performance Evaluation on Static Loading and Cyclic Loading for Structural Insulated Panels", J. Korean Soc. Adv. Comp. Strus., Vol. 4, No. 1, pp. 33-39, 2013. DOI: https://doi.org/10.11004/kosacs.2013.4.1.033
  8. S. M. Kang, M. Y. Hwang, S. T. Kim, Y. J. Cho, B. Y. Lee, "Evaluation on Transverse Load Performance of Lightweight Composite Panels", Journal of the Korea Academia-Industrial, Vol. 19, No. 1, pp. 146-157, 2018. DOI: http://dx.doi.org/10.5762/KAIS.2018.19.1.146
  9. Ralph Evins, " A review of computational optimisation methods applied to sustainable building design", Renewable and Sustainable Energy Reviews, Vol. 22, pp.230-245, 2013 DOI: https://doi.org/10.1016/j.rser.2013.02.004
  10. Timothy L. Hemsath, Kaveh Alagheband Bandhosseini, "Sensitivity analysis evaluating basic building geometry's effect on energy use", Reneable Energy, Vol. 76, pp. 526-538, 2015 DOI: https://doi.org/10.1016/j.renene.2014.11.044
  11. Xi Chen, Hongxing Yang, Weilong Zhang, "A comprehensive sensitivity study of major passive design parameters for the public rental housing development in Hong Kong", Energy, Vol.93. pp. 1804-1818, 2015 DOI: https://doi.org/10.1016/j.energy.2015.10.061
  12. Ministry of the Interior and Safety, Guidelines for Establishing Disaster Relief Plans, p.49-56, Ministry of the Interior and Safety, 2018.
  13. Southco, R2/R5-Cover up butt-Joint panel retaining latch, Southco, 2018, https://www.southco.com/ko-kr/product/class.html?cid=7425&404%3bhttp%3a%2f%2fw ww.southco.com%3a80%2fr2, (accessed Dec. 2018)
  14. Architectural Institute of Korea, KBC 2016, Ministry of Land, Infrastructure, and Transport, p.76-190, 2016.
  15. DesignBuilder Software Ltd, Design Builder V.5.5, https://www.designbuilder.co.uk/, (accessed Dec. 2018)
  16. Esteco, Mode Frontier, https://www.esteco.com/ modefrontier/, (accessed Dec. 2018)