DOI QR코드

DOI QR Code

수동 선배열 소나의 저주파 간섭 신호에 대한 독립성분분석 알고리즘 비교

Comparison of independent component analysis algorithms for low-frequency interference of passive line array sonars

  • 투고 : 2018.11.06
  • 심사 : 2019.03.26
  • 발행 : 2019.03.31

초록

본 논문에서는 수동 선배열 소나의 저주파 영역에서 수신된 표적 신호로부터 간섭신호를 분리해 내기 위해 독립성분분석 알고리즘을 적용하는 방안을 제안하고 기존 알고리즘들의 성능을 비교해 보았다. 저주파 대역 신호의 경우 비교적 넓은 방위로부터 수신되기 때문에 인접 빔 신호를 관측신호로 활용하여 독립성분분석을 수행할 수 있다. 신호분리에 사용한 독립성분분석 알고리즘은 FastICA(Fast Independent Component Analysis), NNMF (Non-negative Matrix Factorization), JADE (Joint Approximation Diagonalization of Eigen-matrices)이다. 실측 선배열 수동소나신호를 이용하여 독립성분분석을 수행한 결과 제안한 방법으로 간섭신호분리가 가능함을 확인하였으며, JADE 알고리즘의 신호 분리 성능이 가장 우수한 것으로 나타났다.

In this paper, we proposed an application method of ICA (Independent Component Analysis) to passive line array sonar to separate interferences from target signals in low frequency band and compared performance of three conventional ICA algorithms. Since the low frequency signals are received through larger bearing angles than other frequency bands, neighboring beam signals can be used to perform ICA as measurement signals of the ICA. We use three ICA algorithms such as Fast ICA, NNMF (Non-negative Matrix Factorization) and JADE (Joint Approximation Diagonalization of Eigen-matrices). Through experiments on real data obtained from passive line array sonar, it is verified that the interference can be separable from target signals by the suggested method and the JADE algorithm shows the best separation performance among the three algorithms.

키워드

GOHHBH_2019_v38n2_177_f0001.png 이미지

Fig. 1. Experiment environment.

GOHHBH_2019_v38n2_177_f0002.png 이미지

Fig. 2. Received signals in frequency-azimuth domain.

GOHHBH_2019_v38n2_177_f0003.png 이미지

Fig. 3. Short-Time Fourier Transform (STFT) of five beamformed signals corresponding to the Fig. 2. (a) 5th beam, (b) 6th beam, (c) 7th beam, (d) 8th beam, (e) 9th beam.

GOHHBH_2019_v38n2_177_f0004.png 이미지

Fig. 4. Power spectrum of middle beam (7th beam) signal at 10 s.

GOHHBH_2019_v38n2_177_f0005.png 이미지

Fig. 5. STFT of separated signals by FastICA algorithm (a) interference (b) signal.

GOHHBH_2019_v38n2_177_f0006.png 이미지

Fig. 6. Power spectrums of separated signals by Fast-ICA algorithm (a) interference (b) signal.

GOHHBH_2019_v38n2_177_f0007.png 이미지

Fig. 7. STFT of separated signals by NNMF algorithm (a) interference (b) signal.

GOHHBH_2019_v38n2_177_f0008.png 이미지

Fig. 8. Power spectrums of separated signals by NNMF algorithm (a) interference (b) signal.

GOHHBH_2019_v38n2_177_f0009.png 이미지

Fig. 9. STFT of separated signals by JADE algorithm (a) interference (b) signal.

GOHHBH_2019_v38n2_177_f0010.png 이미지

Fig. 10. Power spectrums of separated signals by JADE algorithm (a) interference (b) signal.

Table 1. Comparison of SIRs (signal to interference ratio) computed by three algorithms according to number of signals [dB].

GOHHBH_2019_v38n2_177_t0001.png 이미지

Table 2. Comparison of computation times of three algorithms [s].

GOHHBH_2019_v38n2_177_t0002.png 이미지

참고문헌

  1. A. Hyvarinen and E. Oja., "Independent component analysis: algorithms and applications," Neural networks, 13, 411-430 (2000). https://doi.org/10.1016/S0893-6080(00)00026-5
  2. A. Hyvarinen, "Independent component analysis: recent advances," Phil. Trans. R. Soc. A 371.1984, 20110534 (2013). https://doi.org/10.1098/rsta.2011.0534
  3. G. R. Naik, D. K. Kumar, and H. Weghorn, "Performance comparison of ICA algorithms for isometric hand gesture identification using surface EMG," ISSNIP, Intelligent Sensors, Sensor Networks and Information, 3rd International Conference on. IEEE, 613-618 (2007).
  4. N. Falco, L. Bruzzone, and J. A. Benediktsson. "A comparative study of different ICA algorithms for hyperspectral image analysis," Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), 5th Workshop on. IEEE, 1-4 (2013).
  5. Z. Koldovsky, P. Tichavsky, and E. Oja, "Efficient variant of algorithm FastICA for independent component analysis attaining the Cramér-Rao lower bound," IEEE Transactions on Neural Networks, 17, 1265-1277 (2006). https://doi.org/10.1109/TNN.2006.875991
  6. N. N. de Moura, J. M. Seixas, W. S. Filho, and A. V. Greco, "Independent component analysis for optimal passive sonar signal detection. In Intelligent Systems Design and Applications," ISDA, Seventh International Conference IEEE, 671-678, (2007).
  7. N. N. de Moura, E. S. Filho, and J. M. de Seixas, "Independent component analysis for passive sonar signal processing," Advances in Sonar Technology. InTech, 91-110 (2009).
  8. H. Lee, I. Seo, and K. Bae, "Separation of passive sonar target signals using frequency domain independent component analysis", J. Acoust. Soc. Kr. 35, 110-117 (2016). https://doi.org/10.7776/ASK.2016.35.2.110
  9. A. Hyvarinen and E. Oja, "A fixed-point algorithm for independent component analysis," Neural Computation, 9, 1482-1492 (1997).
  10. A. Hyvarinen, P. Ramkumar, L. Parkkonen, and R. Hari, "Independent component analysis of short-time Fourier transforms for spontaneous EEG/MEG analysis," NeuroImage, 49, 257-271 (2009). https://doi.org/10.1016/j.neuroimage.2009.08.028
  11. H. -L, Hsieh and J. -T. Chien. "A new nonnegative matrix factorization for independent component analysis," ICASSP IEEE, 2026-2029 (2010).
  12. D. N. Rutledge and D. J-R Bouveresse, "Independent Components Analysis with the JADE algorithm," Trends in Analytical Chemistry, 50, 22-32 (2013). https://doi.org/10.1016/j.trac.2013.03.013