DOI QR코드

DOI QR Code

An Evaluation of the Performance of Lightweight Foamed Concrete by Using Foaming Agent with Lightweight Aggregate

합성기포제 및 경량골재를 활용한 하이브리드형 경량기포콘크리트 개발

  • 정성민 (삼성물산 빌딩사업부) ;
  • 장현오 ((재)한국건설생활환경시험연구원 산업융합센터)
  • Published : 2019.06.30

Abstract

Keywords

GSJHBM_2019_v14n2_35_f0001.png 이미지

그림 1. 인공경량골재

GSJHBM_2019_v14n2_35_f0002.png 이미지

그림 2. 플로우 측정결과

GSJHBM_2019_v14n2_35_f0003.png 이미지

그림 3. 밀도 측정결과

GSJHBM_2019_v14n2_35_f0004.png 이미지

그림 5. 압축강도 측정결과(경량골재 20 % 혼입)

GSJHBM_2019_v14n2_35_f0005.png 이미지

그림 6. 압축강도 측정결과(경량골재 30 % 혼입)

GSJHBM_2019_v14n2_35_f0006.png 이미지

그림 7. 재료분리 측정결과

GSJHBM_2019_v14n2_35_f0007.png 이미지

그림 4. 밀도 측정결과

[표 1] 실험 변수

GSJHBM_2019_v14n2_35_t0001.png 이미지

[표 2] 경량골재의 물리적 특성

GSJHBM_2019_v14n2_35_t0002.png 이미지

[표 3] 콘크리트 배합

GSJHBM_2019_v14n2_35_t0003.png 이미지

References

  1. Chandra, S., and L. Berntsson (2002). Chapter 1 Historical Background of Lightweight Aggregate Concrete, Noyes publications + William Andrew Publishing, Norwich, 5-19.
  2. Kramer, C., Schauerte, M., Kowald, T. L., and Trettin, R. H. F. (2015). Three-phase-foams for foam concrete application, Materials Characterization, 102, 173-179. https://doi.org/10.1016/j.matchar.2015.03.004
  3. JIANG, J., and Jun, L. (2015). Effect of composite set-accelerator on the properties of ultra-lightweight foamed concrete, J. Funct. Mater, 46, 12116-12121.
  4. Kunhanandan Nambiar, E. K., and Ramamurthy, K. (2007). Air-void characterisation of foam concrete, Cement and Concrete Research, 37(2), 221-230. https://doi.org/10.1016/j.cemconres.2006.10.009
  5. National Noise Information System (2016). http://www.noiseinfo.or.kr/index.jsp/
  6. Ministry of environment (2007). Development of Floor impact Noise Insulation System in Apartment Buildings.
  7. KS F 4039 (2004). Foamed concrete for cast-in-site, Korean Standards Association, Seoul.
  8. Kim, H. K., Jeon, J. H., and Lee, H. K. (2012). Workability, and mechanical, acoustic and thermal properties of lightweight aggregate concrete with a high volume of entrained air, Construction and Building Materials, 29, 193-200. https://doi.org/10.1016/j.conbuildmat.2011.08.067
  9. Shafigh, P., Nomeli, M. A., Alengaram, U. J., Mahmud, H. B., and Jumaat, M. Z. (2016). Engineering properties of lightweight aggregate concrete containing limestone powder and high volume fly ash, Journal of Cleaner Production, 135, 148-157. https://doi.org/10.1016/j.jclepro.2016.06.082
  10. KS F 2459 (2002). Standard test method for bulk specific gravity, water content, absorption and compressive strength of cellular concrete, Korean Standards Association, Seoul.
  11. Holm, T. A., and Bremner, T. W. (2000). High-Durability Structural Low-Density Concrete for Application in Severe Marine Environments, Engineer Research and Development Center, 1-95.
  12. Youm, K. S., Moon, J. H., Cho, J. Y., and Kim, J. J. (2016). Experimental study on strength and durability of lightweight aggregate concrete containing silica fume, Construction and Building Materials, 114, 517-527. https://doi.org/10.1016/j.conbuildmat.2016.03.165