DOI QR코드

DOI QR Code

An Experimental Study on Flow Characteristics in the Open Annular Flume

환형수조에서 흐름특성에 관한 실험적 연구

  • Choi, In Ho (Department of Civil Engineering, Seoil University) ;
  • Kim, Jong Woo (Department of Civil Engineering, Seoil University)
  • 최인호 (서일대학교 토목공학과) ;
  • 김종우 (서일대학교 토목공학과)
  • Received : 2019.06.19
  • Accepted : 2019.07.25
  • Published : 2019.08.30

Abstract

This study investigated the flow characteristics in an annular flume with a free water surface using the Acoustic Doppler Velocimeter(ADV) in the laboratory. The flow was driven by the rotation of the inner cylinder in a way designed not to interfere with flocculation of cohesive sediments. The effect of the inner cylinder for the longitudinal velocities showed highest near the moving boundary and decreased towards the outer wall. At the lower longitudinal velocity, there was a peak in turbulent kinetic energy near the bed, whereas it moved upward to with increasing of the velocity. The longitudinal velocities estimated using the power law were in good agreement with the measured values than the values predicted by the log-law with roughness lengths. The average friction velocities evaluated by Reynolds shear stress were smaller than the values calculated using the log-law and power law when increasing the longitudinal velocity.

본 실험연구는 자유수면을 이루는 환형수조에서 초음파 유속계를 이용하여 흐름특성을 분석하였다. 여기서 점착성 유사의 응집을 방해하지 않도록 설계된 실린더의 회전에 따라 흐름이 형성되도록 하였다. 종방향 유속에 대한 내부 실린더의 영향은 이동 경계 근처에서 가장 높았고 외측 벽쪽으로는 감소했다. 종방향 저유속에서 난류 운동에너지는 바닥근처 지점에서 가장 크게 나타났지만 종방향 유속이 증가함에 따라 위쪽으로 이동하였다. 멱법칙으로 산정된 종방향 유속은 바닥 마찰길이를 고려한 대수분포형태인 로그법칙으로 예측한 값보다 실측치와 잘 일치하였다. 레이놀즈 응력 방법으로 산정한 평균마찰속도는 종방향 유속이 증가할 때 로그법칙과 멱법칙으로 계산된 값보다 작게 나타났다.

Keywords

References

  1. Barenblatt, GI, Chorin, AJ and Prostokishin, VM (1997). Scaling laws for fully developed turbulent flow in pipes. Appl. Mech. Rev., 50(7), pp. 413-429. DOI:10.1115/1.3101726
  2. Booij R (1994). Measurements of the flow field in a rotating annular flume. Communications on Hydraulic and Geotechnical Engineering Report no. 94-2. http://resolver.tudelft.nl/uuid:431193bc-8cfb-46ce-81fd-5034941b0769
  3. Choi, IH and Kim, JW (2014). Experimental study on erosional behaviour of fine-grained sediments. J. of Korean Society Hazard Mitigation, 14(3), pp. 863-872. [Korean Literature] http://dx.doi.org/10.9798/KOSHAM.2014.14.3.291
  4. Choi, IH and Kim, JW (2017). Study of settling properties of cohesive sediments. J. of Wetlands Research. 19(3), pp. 303-310. [Korean Literature] DOI https://doi.org/10.17663/JWR.2017.19.3.303
  5. Choi, IH and Kim, JW (2018). Physical characteristics of floc density of suspended fine particles in accordance with the cohesiveness. J. of Wetlands Research. 20(3), pp. 227-234. [Korean Literature] DOI https://doi.org/10.17663/JWR.2018.20.3.227
  6. Duan, JG (2009). Mean flow and turbulence around a laboratory spur dike. J. of Hydraulic Engineering, 131(12), pp. 1126-1135. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000077
  7. Gharabaghi, B, Inkratas, C, Krishnappan, BG, Rudra, RP (2007). Flow characteristics in a rotating circular flume. The Open Civil Engineering Journal, 1, 30-36. https://doi.org/10.2174/1874149500701010030
  8. Hillebrand, G (2008). Transportverhalten kohaesiver Sedimente in turbulenten Stroemungen-Untersuchungen im offenen Kreisgerinne. Dissertation, IWK, Universitat Karlsruhe. [German Literature]
  9. Johansen, C (1998). Dynamics of cohesive sediments. Hydraulic & Coastal Engineering Laboratory Department of Civil Engineering Aalborg University.
  10. Krishnappan, BG (1993). Rotating circular flume. J. of Hydraulic Engineering, 119(6), 758-767. DOI: 10.1061/(ASCE)0733-9429(1993)119:6(758)
  11. Krishnappan, BG and Engel, P (2004). Distribution of bed shear stress in rotating circular flume. J. of Hydraulic Engineering, 130(4), 324-331. DOI: 10.1061/(ASCE)0733-9429(2004)130:4(324)
  12. Krishnappan, BG (2004). Erosion behavior of fine sediment deposits. Canadian Journal of Civil Engineering, 31(5), pp. 759-766. DOI: 10.1139/l04-054
  13. Mohrig, D (2004). Conservation of Mass and Momentum (PDF). 12.110: Sedimentary Geology, Fall 2004. MIT OCW.
  14. Neumeier, U, Lucas, CH and Collins, M (2006). Erodibility and erosion patterns of mudflat sediments investigated using an annular flume. Aquatic Ecology 40 pp.543-554. DOI 10.1007/s 10452-004-0189-8
  15. Parchure, TM and Mehta, AJ (1985). Erosion of Soft Cohesive Sediment Deposits. J. of Hydraulic Engineering, 111(10), pp. 1308-1326. DOI: 10.1061/(ASCE)0733-9429(1985)111:10(1308)
  16. Schlichting, H and Gersten, K (2000). Boundary-Layer Theory. Springer, 8th edition. https://dx.doi.org/10.1007/978-3-642-85829-1
  17. Skulovich, O, Ganal, C, Nusser, LK, Cofalla, C, Schuettrumpf, H, Hollert, H, Seiler, TB and Ostfeld, A (2018). Prediction of erosional rates for cohesive sediments in annular flume experiments using artificial neural networks. $H_2Open$ Journal 1 (2): pp. 99-111. https://doi.org/10.2166/h2oj.2018.107
  18. Spork, V (1997). Erosionsverhalten feiner Sedimente und ihre biogene Stabilisierung. Band 114 der Reihe Mitteilungen des Lehrstuhls und Instituts fuer Wasserwirtschaft der RWTH Achen. [German Literature]
  19. Van Leussen, W (1994). Estuarine Macroflocs and their Role in Fine-grained Sediment Transport. Ph.D. Thesis, University Utrecht.
  20. Von Karman, T (1930). Mechanische Ahnlichkeit und Turbulenz, Nachrichten von der Gesellschaft der Wissenschaften zu Gottingen, Fachgruppe 1(Mathematik), 5, pp. 58-76. [German Literature]
  21. Whipple, K (2004). Hydraulic Roughness (PDF). Surface processes and landscape evolution. MIT OCW.