DOI QR코드

DOI QR Code

A biomimetic communication method based on time shift using dolphin whistle

돌고래 휘슬을 이용한 지연시간 기반 생체 모방 통신 기법

  • Received : 2019.07.02
  • Accepted : 2019.07.24
  • Published : 2019.09.30

Abstract

In this paper, we propose a biomimetic communication method using a dolphin whistle to covertly transmit the communication signal. A conventional CSS (Chirp Spread Spectrum) modulation technique divides dolphin whistle into several slots and modulates with up and down chirp signals. That causes the time-frequency characteristic difference between the original dolphin whistle and the camouflage performance is degraded. In this paper, we propose a delay based modulation scheme to eliminate distortions. The simulation results show that the bit error rate of the proposed method is better performance than that of the conventional CSS modulation method by about 3.5 dB to 8 dB. And the camouflage performance that evaluated through the cross correlation in the time-frequency domain is also better than that of the CSS modulation method.

본 논문에서는 은밀하게 통신 신호를 전송하기 위해 돌고래 휘슬음을 모방한 통신 기법을 제안하였다. 기존의 CSS(Chirp Spread Spectrum) 변조 기법은 돌고래 휘슬음을 정해진 시간 단위에 따라 여러 슬롯으로 나누고 각 슬롯에 상향 및 하향 처프 신호를 통해 변조하는 기법이다. 이에 따라 본래의 돌고래 휘슬음과의 시간-주파수 특성 차이가 발생하게 되어 모방 성능이 저하된다. 본 논문에서는 이러한 왜곡을 제거하기 위해 지연 시간을 기반으로 하는 변조 기법을 제안하였다. 전산 모의실험 결과 기존의 CSS 변조 기법에 비해 제안 방법의 비트오류율 성능이 약 3.5 dB ~ 8 dB 우수하였으며 시간-주파수 영역에서의 상호 상관도를 통한 모방 성능 평가에서도 CSS 변조 기법에 비해 우수한 것을 보였다.

Keywords

References

  1. S. Liu, G. Qiao, and A. Ismail, "Covert underwater acoustic communication using dolphin sounds," J. Acoust. Soc. Am. 133, EL300-EL306 (2013). https://doi.org/10.1121/1.4795219
  2. G. Qiao, Y. Zhao, S. Liu, and M. Bilal, "Dolphin sounds inspired covert underwater acoustic communication and micro modem," J. Sensors, 17, 2447 (2017).
  3. S. Liu, T. Ma, G. Qiao, L. Ma, and Y. Yin, "Biologically inspired covert underwater acoustic communication by mimiking dolphin whistles," J. Appl. Acoust., 120, 120-128 (2017). https://doi.org/10.1016/j.apacoust.2017.01.018
  4. J. Ahn, H. Lee, Y. Kim, W. Kim, and J. Chung, "Multipath combining method for frequency shift keying underwater communications mimiking dolphin whistle" (in Korean), J. Acoust. Soc. Kr. 37, 404-411 (2018).
  5. J. Ahn, H. Lee, Y. Kim, S. Lee, and J. Chung, "Mimicking dolphin whistles with continuously varying carrier frequency modulation for covert underwater acoustic communication," Jpn. J. Appl. Phys. 58, SGGF05 (2019). https://doi.org/10.7567/1347-4065/ab14d2
  6. D. K. Mellinger, S. W. Martin, R. P. Morrissey, and J. J. Yosco, "A method for detecting whistles, moans, and other frequency contour sounds," J. Acoust. Soc. Am. 129, 4055-4061 (2011). https://doi.org/10.1121/1.3531926
  7. D. Gillespieb, M. Caillat, J. Gordon, and P. White, "Automatic detection and classification of odontocete whistles," J. Acoust. Soc. Am. 134, 2427-2437 (2013). https://doi.org/10.1121/1.4816555
  8. T. H. Lin, L. S. Choui, T. Akamatsu, H. C. Chan, and C. F. Chen, "An automatic detection algorithm for extracting the representative frequency of cetacean tonal sounds," J. Acoust. Soc. Am. 134, 2477-2485 (2013). https://doi.org/10.1121/1.4816572
  9. L. Shamir, C. Yerby, R. Simpson, A. M. von Benda-Beckmann, P. Tyack, F. Samarra, P. Miller, and J. Wallin, "Classification of large acoustic datasets using machine learning and crowdsourcing: Application to whale calls," J. Acoust. Soc. Am. 135, 953-962 (2014). https://doi.org/10.1121/1.4861348
  10. J. Locke and P. R. White, "The performance of methods based on the fractional Fourier transform for detecting marine mammal vocalizations," J. Acoust. Soc. Am. 130, 1974-1984 (2011). https://doi.org/10.1121/1.3631664