DOI QR코드

DOI QR Code

Preparation of Spherical Silica by Water/oil Microemulsion with Minimal Oil Content

오일 양이 최소화된 물/오일 에멀젼을 통한 구형 마이크로 크기 실리카 합성

  • Pyo, Eunji (Department of Chemistry and RINS, Gyeongsang National University) ;
  • Cha, Yeona (Department of Chemistry and RINS, Gyeongsang National University) ;
  • Kang, Donggyun (GIANT CHEMICAL) ;
  • Kwon, Ki-Young (Department of Chemistry and RINS, Gyeongsang National University)
  • Received : 2020.10.08
  • Accepted : 2020.11.02
  • Published : 2020.12.10

Abstract

We prepared spherical silica by minimizing the amount of oil through water/oil (W/O) emulsion. The spherical silica was successfully synthesized by using 20 to 60 mL of hexane as an oil for 283 g of water glass. The size of silica was dependent on the amount of oil where the size of silica particles increased as the amount of oil increased. The specific surface areas of samples measured using the BET method were 186 to 230 ㎡/g. X-ray fluorescence (XRF) analysis results showed that the SiO2 content was more than 90% while sodium was 3.27~4.5 wt. %. The spherical silica prepared in this study could be optimized for mass synthesis and commercialization because the industrial sodium silicate solution was used as a precursor of Si as well as the minimum amounts of hexane and nonionic surfactant were employed.

W/O 에멀젼을 통해 구형의 실리카를 합성하는데 있어서 오일의 양을 최소화하는 연구를 수행하였다. 물유리 283 g에 오일로서 헥산을 최소한으로 20~60 mL 사용하여 구형의 실리카가 합성됨을 확인하였다. 실리카의 크기는 오일의 양에 의존하였으며, 오일의 양이 증가함에 따라서 실리카 입자의 크기가 증가하는 것을 확인하였다. 합성된 구형 실리카의 비표면적을 BET법을 통해 측정해본 결과 186~230 ㎡/g 값임을 확인하였다. XRF 분석으로부터 90% 이상이 SiO2임을 확인하였으며, 물유리 사용으로 인한 나트륨이 3.27~4.5 wt. %의 불순물로 함유되어 있었다. 본 연구에서 제조한 구형의 실리카는 Si의 전구체를 공업용 규산나트륨 용액을 사용함과 더불어 최소한의 헥산과 비이온계면활성제를 통하여 만들어졌기 때문에 대량 합성 및 상업화에 최적화되어 있는 조건이라고 판단된다.

Keywords

References

  1. F. Rancan, Q. Gao, C. Graf, S. Troppens, S. Hadam, S. Hackbarth, C. Kembuan, U. Blume-Peytavi, E. Ruhl, J. Lademann, and A. Vogt, Skin penetration and cellular uptake of amorphous silica nanoparticles with variable size, surface functionalization, and colloidal stability, ACS Nano, 6, 6829-6842 (2012). https://doi.org/10.1021/nn301622h
  2. D. Napierska, L. C. J. Thomassen, D. Lison, J. A. Martens, and P. H. Hoet, The nanosilica hazard: Another variable entity, Part. Fibre Toxicol., 7, 39 (2010). https://doi.org/10.1186/1743-8977-7-39
  3. A. Rahman, D. Seth, S. K. Mukhopadhyaya, R. L. Brahmachary, C. Ulrichs, and A. Goswami, Surface functionalized amorphous nanosilica and microsilica with nanopores as promising tools in biomedicine, Naturwissenschaften, 96, 31-38 (2009). https://doi.org/10.1007/s00114-008-0445-1
  4. R. Van Grieken, J. Aguado, M. J. Lopez-Muoz, and J. Marugan, Synthesis of size-controlled silica-supported TiO2 photocatalysts, J. Photochem. Photobiol. A, 148, 315-322 (2002). https://doi.org/10.1016/S1010-6030(02)00058-8
  5. R. R. Davda, J. W. Shabaker, G. W. Huber, R. D. Cortright, and J. A. Dumesic, Aqueous-phase reforming of ethylene glycol on silica-supported metal catalysts, Appl. Catal. B: Environ., 43, 13-26 (2003). https://doi.org/10.1016/S0926-3373(02)00277-1
  6. Y. Han, G. Hwang, H. Kim, B. Z. Haznedaroglu, and B. Lee, Amine-impregnated millimeter-sized spherical silica foams with hierarchical mesoporous-macroporous structure for CO2 capture, Chem. Eng. J., 259, 653-662 (2015). https://doi.org/10.1016/j.cej.2014.08.043
  7. C. Lu, F. Su, S. C. Hsu, W. Chen, H. Bai, J. F. Hwang, and H. H. Lee, Thermodynamics and regeneration of CO2 adsorption on mesoporous spherical-silica particles, Fuel Process. Technol., 90, 1543-1549 (2009). https://doi.org/10.1016/j.fuproc.2009.08.002
  8. T. Jesionowski, Characterization of silicas precipitated from solution of sodium metasilicate and hydrochloric acid in emulsion medium, Powder Technol., 127, 56-65 (2002). https://doi.org/10.1016/S0032-5910(02)00093-1
  9. J. H. Park, C. Oh, S. I. Shin, S. K. Moon, and S. G. Oh, Preparation of hollow silica microspheres in W/O emulsions with polymers, J. Colloid Interface Sci., 266, 107-114 (2003). https://doi.org/10.1016/S0021-9797(03)00645-3
  10. J. Esquena, T. F. Tadros, K. Kostarelos, and C. Solans, Preparation of narrow size distribution silica particles using microemulsions, Langmuir, 13, 6400-6406 (1997). https://doi.org/10.1021/la9705120
  11. S. G. Lee, Y. S. Jang, S. S. Park, B. S. Kang, B. Y. Moon, and H. C. Park, Synthesis of fine sodium-free silica powder from sodium silicate using w/o emulsion, Mater. Chem. Phys., 100, 503-506 (2006). https://doi.org/10.1016/j.matchemphys.2006.02.001
  12. B. P. Binks and S. O. Lumsdon, Catastrophic phase inversion of water-in-oil emulsions stabilized by hydrophobie silica, Langmuir, 16, 2539-2547 (2000). https://doi.org/10.1021/la991081j
  13. D. G. Kang, K. D. Kim, and H. T. Kim, Silica nanoparticles prepared by W/O microemulsion Method at Acid/Base Conditions, J. Ind. Eng. Chem., 11, 500-504 (2000).
  14. J. H. Park, S. C. Chung, C. Oh, S. I. Shin, S. S. Im, and S. G. Oh, Preparation and size control of spherical silica particles using W/O emulsion, J. Ind. Eng. Chem., 13, 502-508 (2002).
  15. W. Stober, A. Fink, and E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range, J. Colloid Interface Sci., 26, 62-69 (1968). https://doi.org/10.1016/0021-9797(68)90272-5
  16. A. K. Van Helden, J. W. Jansen, and A. Vrij, Preparation and characterization of spherical monodisperse silica dispersions in nonaqueous solvents, J. Colloid Interface Sci., 81, 354-368 (1981). https://doi.org/10.1016/0021-9797(81)90417-3
  17. J. Liu, S. Z. Qiao, H. Liu, J. Chen, A. Orpe, D. Zhao, and G. Q. Lu, Extension of the stober method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres, Angew. Chem. Int. Ed., 50, 5947-5951 (2011). https://doi.org/10.1002/anie.201102011
  18. T. Nakamura, M. Mizutani, H. Nozaki, N. Suzuki, and K. Yano, Formation mechanism for monodispersed mesoporous silica spheres and its application to the synthesis of core/shell particles, J. Phys. Chem. C, 111, 1093-1100 (2007). https://doi.org/10.1021/jp0648240
  19. D. Niu, Z. Ma, Y. Li, and J. Shi, Synthesis of core-shell structured dual-mesoporous silica spheres with tunable pore size and controllable shell thickness, J. Am. Chem. Soc., 132, 15144-15147 (2010). https://doi.org/10.1021/ja1070653
  20. T. Suteewong, H. Sai, R. Cohen, S. Wang, M. Bradbury, B. Baird, S. M. Gruner, and U. Wiesner, Highly aminated mesoporous silica nanoparticles with cubic pore structure, J. Am. Chem. Soc., 133, 172-175 (2011). https://doi.org/10.1021/ja1061664
  21. B. L. Newalkar and S. Komarneni, Control over microporosity of ordered microporous-mesoporous silica SBA-15 framework under microwave-hydrothermal conditions: Effect of salt addition, Chem. Mater., 13, 4573-4579 (2001). https://doi.org/10.1021/cm0103038
  22. B. Knoblich and T. Gerber, The arrangement of fractal clusters dependent on the pH value in silica gels from sodium silicate solutions, J. Non-Cryst. Solids, 296, 81-87 (2001). https://doi.org/10.1016/S0022-3093(01)00871-7
  23. J. M. Kim and G. D. Stucky, Synthesis of highly ordered mesoporous silica materials using sodium silicate and amphiphilic block copolymers, Chem. Commun., 13, 1159-1160 (2000).
  24. B. R. Midmore, Effect of aqueous phase composition on the properties of a silica- stabilized W/O emulsion, J. Colloid Interface Sci., 213, 352-359 (1999). https://doi.org/10.1006/jcis.1999.6108
  25. J. H. Park, S. Y. Bae, and S. G. Oh, Fabrication of hollow silica microspheres through the self-assembly behavior of polymers in W/O emulsion, Chem. Lett., 32, 598-599 (2003). https://doi.org/10.1246/cl.2003.598
  26. S. Yun, H. Luo, and Y. Gao, Superhydrophobic silica aerogel microspheres from methyltrimethoxysilane: Rapid synthesis via ambient pressure drying and excellent absorption properties, RSC Adv., 4, 4535-4542 (2014). https://doi.org/10.1039/C3RA46911E
  27. S. C. K. H. C. Park, The characteristic control of spherical silica particle using by W/O type emulsion(1), J. Korean Oil Chemist. Soc., 23, 1-11 (2006).