DOI QR코드

DOI QR Code

A Study on the Electrochemical Performance of Fe-V Chloric/Sulfuric Mixed Acid Redox Flow Battery Depending on Electrode Activation Temperature

Fe-V Chloric/Sulfuric Mixed Acid 레독스흐름전지 전극의 활성화 온도에 따른 전기화학적 성능 고찰

  • Lee, Han Eol (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Kim, Dae Eop (Department of Chemical Engineering Education, Chungnam National University) ;
  • Kim, Cheol Joong (Department of Chemical Engineering Education, Chungnam National University) ;
  • Kim, Taekeun (Department of Chemical Engineering Education, Chungnam National University)
  • 이한얼 (충남대학교 에너지과학기술대학원) ;
  • 김대업 (충남대학교 화학공학교육과) ;
  • 김철중 (충남대학교 화학공학교육과) ;
  • 김태근 (충남대학교 화학공학교육과)
  • Received : 2020.09.28
  • Accepted : 2020.11.05
  • Published : 2020.12.10

Abstract

Among the components of redox flow battery (RFB), the electrode serves as a diffusion layer of an electrolyte and a path for electrons and also is a major component that directly affects the RFB performance. In this paper, chloric/sulfuric mixed acidwas used as a supporting electrolyte in RFB system with Fe2+/Fe3+ and V2+/V3+ as redox couple. The optimum electrode and activation temperature were suggested by comparing the capacity, coulombic efficiency and energy efficiency according to the electrode type and activation temperature. In the RFB single cell evaluation using 5 types of carbon electrodes used in the experiments, all of them showed close to the theoretical capacity to retain the reliability of the evaluation results. GFD4EA showed relatively excellent energy efficiency and charge/discharge capacity. In order to investigate the electrochemical performance according to the activation temperature, GFD4EA electrode was activated by heat treatment at different temperatures of 400, 450, 500, 600 and 700 ℃ under an air atmosphere. Changes in physical properties before and after the activation were observed using electrode mass retention, scanning electron microscope (SEM), XPS analysis, and electrochemical performance was compared by conducting RFB single evaluation using electrodes activated at each temperature given above.

레독스흐름전지(redox flow battery, RFB)의 구성 부품 중 전극은 전해액의 확산층 역할을 함과 동시에 전자의 통로 역할을 담당하여 출력에 직접적인 영향을 미치는 주요 부품이다. 본 연구는 Fe2+/Fe3+와 V2+/V3+를 레독스 커플로 사용한 RFB 시스템에 chloric/sulfuric mixed acid 지지 전해액을 사용한 경우 전극 종류 및 활성화 정도에 따른 용량, 쿨롱 효율, 에너지 효율을 비교하여 최적의 전극 및 활성화 정도를 제시하였다. 실험에 사용된 5종의 탄소 전극을 사용한 단일셀 평가에서 모두 이론 용량에 근사한 값을 보여 신뢰성을 확보하였으며, 사용된 전극 중 GFD4EA는 상대적으로 우수한 에너지 효율 및 충방전 용량을 나타내었다. 활성화 온도에 따른 전기화학적 성능 고찰을 위하여 GFD4EA 전극을 공기 분위기 하에서 400, 450, 500, 600 및 700 ℃에서 열처리하여 활성화하였다. 질량 변화, 주사전자현미경(SEM) 및 XPS 분석을 통하여 활성화 전 후의 물성 변화를 관찰하였으며, 각각의 온도에서 활성화된 전극을 적용한 RFB 단일셀 평가를 실시하여 전기화학적 성능을 비교하였다.

Keywords

References

  1. A. Z. Weber, M. M. Mench, J. P. Meyers, P. N. Ross, J. T. Gostick, and Q. Liu, Redox flow batteries: A review, J. Appl. Electronchem., 41, 1137-1164 (2011). https://doi.org/10.1007/s10800-011-0348-2
  2. F. Pan and Q. Wang, Redox species of redox flow batteries: A review, Molecules, 20, 20499-20517 (2015). https://doi.org/10.3390/molecules201119711
  3. A. Cunha, J. Martins, N. Rodrigues, and F. P. Brito, Vanadium redox flow batteries: A technology review, Int. J. Energ. Res., 39, 889-918 (2015). https://doi.org/10.1002/er.3260
  4. A. Parasuraman, T. M. Lim, C. Menictas, and M. Skyllas-Kazacos, Review of material research and development for vanadium redox flow battery applications, Electrochim. Acta, 101, 27-40 (2013). https://doi.org/10.1016/j.electacta.2012.09.067
  5. B. Li, L. Li, W. Wang, Z. Nie, B. Chen, X. Wei, Q. Luo, Z. Yang, and V. Sprenkle, Fe/V redox flow battery electrolyte investigation and optimization, J. Power Sources, 229, 1-5 (2013). https://doi.org/10.1016/j.jpowsour.2012.11.119
  6. W. Wang, S. Kim, B. Chen, Z. Nie, J. Zhang, G.-G. Xia, L. Li, and Z. Yang, A new redox flow battery using Fe/V redox couples in chloride supporting electrolyte, Energ. Environ. Sci., 4, 4068-4073 (2011). https://doi.org/10.1039/c0ee00765j
  7. W. Wang, Z. Nie, B. Chen, F. Chen, Q. Luo, X. Wei, G.-G. Xia, M. Skyllas‐Kazacos, L. Li, and Z. Yang, A new Fe/V redox flow battery using a sulfuric/chloric mixed‐acid supporting electrolyte, Adv. Energ. Mater., 2, 487-493 (2012). https://doi.org/10.1002/aenm.201100527
  8. O. Nibel, S. M. Taylor, A. Patru, E. Fabbri, L. Gubler, and T. J. Schmidt, Performance of different carbon electrode materials: Insights into stability and degradation under real vanadium redox flow battery operating conditions, J. Electrochem. Soc., 164, A1608-A1615 (2017). https://doi.org/10.1149/2.1081707jes
  9. R. Banerjee, N. Bevilacqua, L. Eifert, and R. Zeis, Characterization of carbon felt electrodes for vanadium redox flow batteries - A pore network modeling approach, J. Energ. Storage, 21, 163-171 (2019). https://doi.org/10.1016/j.est.2018.11.014
  10. W. Li, J. Liu, and C. Yan, Multi-walled carbon nanotubes used as an electrode reaction catalyst for VO2+/VO2+ for a vanadium redox flow battery, Carbon, 49, 3463-3470 (2011). https://doi.org/10.1016/j.carbon.2011.04.045
  11. G. Wei, C. Jia, J. Liu, and C. Yan, Carbon felt supported carbon nanotubes catalysts composite electrode for vanadium redox flow battery application, J. Power Sources, 220, 185-192 (2012). https://doi.org/10.1016/j.jpowsour.2012.07.081
  12. L. Yue, W. Li, F. Sun, L. Zhao, and L. Xing, Highly hydroxylated carbon fibres as electrode materials of all-vanadium redox flow battery, Carbon, 48, 3079-3090 (2010). https://doi.org/10.1016/j.carbon.2010.04.044
  13. P. Mazur, J. Mrlik, J. Pocedic, J. Vrana, J. Dundalek, J. Kosek, and T. Bystron, Effect of graphite felt properties on the long-term durability of negative electrode in vanadium redox flow battery, J. Power Sources, 414, 354-365 (2019). https://doi.org/10.1016/j.jpowsour.2019.01.019
  14. H. Liu, L. Yang, Q. Xu, and C. Yan, An electrochemically activated graphite electrode with excellent kinetics for electrode processes of V (II)/V (III) and V (IV)/V (V) couples in a vanadium redox flow battery, RSC Adv., 4, 55666-55670 (2014). https://doi.org/10.1039/C4RA09777G
  15. Y.-C. Chang, J.-Y. Chen, D. M. Kabtamu, G.-Y. Lin, N.-Y. Hsu, Y.-S. Chou, H.-J. Wei, and C.-H. Wang, High efficiency of CO2-activated graphite felt as electrode for vanadium redox flow battery application, J. Power Sources, 364, 1-8 (2017). https://doi.org/10.1016/j.jpowsour.2017.07.103
  16. D. Dixon, D. Babu, J. Langner, M. Bruns, L. Pfaffmann, A. Bhaskar, J. Schneider, F. Scheiba, and H. Ehrenberg, Effect of oxygen plasma treatment on the electrochemical performance of the rayon and polyacrylonitrile based carbon felt for the vanadium redox flow battery application, J. Power Sources, 332, 240-248 (2016). https://doi.org/10.1016/j.jpowsour.2016.09.070
  17. Z. He, M. Li, Y. Li, L. Wang, J. Zhu, W. Meng, C. Li, H. Zhou, and L. Dai, Electrospun nitrogen-doped carbon nanofiber as negative electrode for vanadium redox flow battery, Appl. Surf. Sci., 469, 423-430 (2019). https://doi.org/10.1016/j.apsusc.2018.10.220
  18. W. Zhang, J. Xi, Z. Li, H. Zhou, L. Liu, Z. Wu, and X. Qiu, Electrochemical activation of graphite felt electrode for VO2+/VO2+ redox couple application, Electrochim. Acta, 89, 429-435 (2013). https://doi.org/10.1016/j.electacta.2012.11.072
  19. I. Derr, D. Przyrembel, J. Schweer, A. Fetyan, J. Langner, J. Melke, M. Weinelt, and C. Roth, Electroless chemical aging of carbon felt electrodes for the all-vanadium redox flow battery (VRFB) investigated by electrochemical impedance and X-ray photoelectron spectroscopy, Electrochim. Acta, 246, 783-793 (2017). https://doi.org/10.1016/j.electacta.2017.06.050
  20. Y. Men and T. Sun, Carbon felts electrode treated in different weak acid solutions through electrochemical oxidation method for all vanadium redox flow battery, Int. J. Electrochem. Sci., 7, 3482-3488 (2012).
  21. W. Wang and X. Wang, Investigation of Ir-modified carbon felt as the positive electrode of an all-vanadium redox flow battery, Electrochim. Acta, 52, 6755-6762 (2007). https://doi.org/10.1016/j.electacta.2007.04.121
  22. R.-H. Huang, C.-H. Sun, T.-m. Tseng, W.-k. Chao, K.-L. Hsueh, and F.-S. Shieu, Investigation of active electrodes modified with platinum/multiwalled carbon nanotube for vanadium redox flow battery, J. Electrochem. Soc., 159, A1579-A1586 (2012). https://doi.org/10.1149/2.003210jes
  23. C. Flox, M. Skoumal, J. Rubio-Garcia, T. Andreu, and J. R. Morante, Strategies for enhancing electrochemical activity of carbon-based electrodes for all-vanadium redox flow batteries, Appl. Energ., 109, 344-351 (2013) https://doi.org/10.1016/j.apenergy.2013.02.001
  24. B. Sun and M. Skyllas-Kazacos, Modification of graphite electrode materials for vanadium redox flow battery application-I. Thermal treatment, Electrochim. Acta, 37, 1253-1260 (1992). https://doi.org/10.1016/0013-4686(92)85064-R
  25. P. C. Ghimire, R. Schweiss, G. G. Scherer, T. M. Lim, N. Wai, A. Bhattarai, and Q. Yan, Optimization of thermal oxidation of electrodes for the performance enhancement in all-vanadium redox flow betteries, Carbon, 155, 176-185 (2019). https://doi.org/10.1016/j.carbon.2019.08.068
  26. P. Mazur, J. Mrlik, J. Benes, J. Pocedic, J. Vrana, J. Dundalek, and J. Kosek, Performance evaluation of thermally treated graphite felt electrodes for vanadium redox flow battery and their four-point single cell characterization, J. Power Sources, 380, 105-114 (2018). https://doi.org/10.1016/j.jpowsour.2018.01.079
  27. A. M. Pezeshki, J. T. Clement, G. M. Veith, T. A. Zawodzinski, and M. M. Mench, High performance electrodes in vanadium redox flow batteries through oxygen-enriched thermal activation, J. Power Sources, 294, 333-338 (2015). https://doi.org/10.1016/j.jpowsour.2015.05.118
  28. Q. Wang, Z. Qu, Z. Jiang, and W. Yang, Experimental study on the performance of a vanadium redox flow battery with non-uniformly compressed carbon felt electrode, Appl. Energ., 213, 293-305 (2018). https://doi.org/10.1016/j.apenergy.2018.01.047
  29. S. J. Yoon, S. Kim, and D. K. Kim, Optimization of local porosity in the electrode as an advanced channel for all-vanadium redox flow battery, Energy, 172, 26-35 (2019). https://doi.org/10.1016/j.energy.2019.01.101