DOI QR코드

DOI QR Code

Study on the Effect of NH3-Selective Catalytic Reduction Efficiency according to Sb Calcination Temperature in V/Sb/TiO2 Catalyst

V/Sb/TiO2 촉매에서 Sb 소성온도에 따른 NH3-SCR 효율 영향 연구

  • Choi, Gyeong Ryun (Department of Environmental Energy Systems Engineering, Graduate school of Kyonggi University) ;
  • Yeo, Jong Hyeon (Department of Environmental Energy Systems Engineering, Graduate school of Kyonggi University) ;
  • Hong, Sung Chang (Department of Environmental Energy Systems Engineering, Kyonggi University)
  • 최경륜 (경기대학교 일반대학원 환경에너지공학과) ;
  • 여종현 (경기대학교 일반대학원 환경에너지공학과) ;
  • 홍성창 (경기대학교 환경에너지공학과)
  • Received : 2020.09.23
  • Accepted : 2020.11.09
  • Published : 2020.12.10

Abstract

In this study, an NH3-selective catalytic reduction (SCR) experiment was performed to control NOx in the temperature range of 200~500 ℃. The reaction activity experiment was conducted by varying the firing temperature of Sb/TiO2 when using V/Sb/TiO2 composite as a catalyst. As a result, when the sintering temperature of Sb/TiO2 was 600 ℃, the efficiency was the best, and it was confirmed that the NOx conversion rate was close to 80% at the reaction temperature of 250 ℃. H2-temperature programmed reduction (TPR), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) analyses were employed to derive the cause of the activity enhancement when prepared at different firing temperatures as described above. As a result, when the sintering temperature of Sb/TiO2, which showed an excellent activity, was prepared at 600 ℃, it was confirmed that VSbO4 was generated. This indicates that the non-stoichiometric species of V increased, resulting in the excellent NOx conversion rate of V/Sb/TiO2.

본 연구는 200~500 ℃ 영역에서 NOx를 제어하기 위한 NH3-SCR 실험을 수행하였다. V/Sb/TiO2 조성의 촉매에서 Sb/TiO2의 소성온도를 다르게 하여 반응활성 실험을 진행하였다. 그 결과 Sb/TiO2의 소성온도가 600 ℃일 때, 가장 효율이 우수하였으며, 특히 반응온도 250 ℃에서 NOx 전환율이 80% 가까이 나오는 것을 확인할 수 있었다. 이와 같이 다른 소성온도로 제조하였을 때 활성증진의 원인을 도출하기 위하여 H2-TPR, XRD, BET, Raman, XPS 분석을 진행하였다. 그 결과 활성이 우수하였던 Sb/TiO2의 소성온도를 600 ℃로 제조하였을 때, VSbO4가 생성되는 것을 확인하였으며, 이 종이 생성됨으로써 V의 비 화학양론종이 증가하여 V/Sb/TiO2의 NOx 전환율이 우수한 것으로 판단된다.

Keywords

References

  1. K. Rahkamaaa-Tolonen, T. Maunula, M. Lomma, M. Huuhtanen, and R. L. Keiski, The effect of NO2 on the activity of fresh and aged zeolite catalysts in the NH3-SCR reaction, Catal. Today, 100 (3-4), 217-222 (2005). https://doi.org/10.1016/j.cattod.2004.09.056
  2. H. Chang, M. T. Jong, C. Wang, R. Qu, Y. Du, J. Li, and J. Hao, Design strategies for P-containing fuels adaptable CeO2-MoO3 catalysts for DeNOx: Significance of phosphorus resistance and N2 selectivity, Environ. Sci. Technol., 47(20), 11692-11699 (2013). https://doi.org/10.1021/es4022014
  3. H. Bosch and F. Janssen, Catalytic reduction of nitrogen oxides - A review on the fundamentals and technology, Catal. Today, 2(4), 369-531 (1990). https://doi.org/10.1016/0920-5861(88)80002-6
  4. P. Forzatti, Environmental catalysis for stationary applications, Catal. Today, 62, 51-65 (2000). https://doi.org/10.1016/S0920-5861(00)00408-9
  5. M. A. Centeno, I. Carrizosa, and J. A. Odriozola, NO-NH3 coad-sorption on vanadia/titania catalysts: Determination of the reduction degree of vanadium, Appl. Catal. B: Environ., 29, 307-314 (2001) https://doi.org/10.1016/S0926-3373(00)00214-9
  6. G. C. Bond and S. F. Tahir, Influence of phosphorous and potassium additives on the properties of vanadia/titania catalysts, Catal. Today, 10, 393-395 (1990). https://doi.org/10.1016/0920-5861(91)80021-Z
  7. W. Chizhong, Y. Shijian, C. Huazhen, P. Yue, and L. Junhua, Dispersion of tungsten oxide on SCR performance of V2O5WO3/TiO2: Acidity, surface species and catalytic activity, Chem. Eng. J., 225, 520-527 (2013). https://doi.org/10.1016/j.cej.2013.04.005
  8. P. Yue, L. Kezhi, and L. Junhua, Identification of the active sites on CeO2-WO3 catalysts for SCR of NOx with NH3: An in situ IR and Raman spectroscopy study, Appl. Catal. B: Environ., 140-141, 483-492 (2013). https://doi.org/10.1016/j.apcatb.2013.04.043
  9. L. Zhiming, Z. Junzhi, Z. Shaoxuan, M. Lingling, and W. Seong lhl, Selective catalytic reduction of NOx by NH3 over MoO3-promoted CeO2/TiO2 catalyst, Catal. Commun., 46, 90-93 (2014). https://doi.org/10.1016/j.catcom.2013.11.032
  10. S. T. Choo, S. D. Yim, I.-S. Nam, S.-W. Ham, and J.-B. Lee, Effect of promoters including WO3 and BaO on the activity and durability of V2O5/sulfated TiO3 catalyst for NO reduction by NH3, Appl. Catal. B: Environ., 44, 237-252 (2003). https://doi.org/10.1016/S0926-3373(03)00073-0
  11. K. Motonobu and H. Mitsuharu, V2O5-WO3/TiO2-SiO2-SO42- catalysts: Influence of active components and supports on activities in the selective catalytic reduction of NO by NH3 and in the oxidation of SO2, Appl. Catal. B: Environ., 63, 104-113 (2006). https://doi.org/10.1016/j.apcatb.2005.09.015
  12. M. D. Amiridis, I. E. Wachs, C. Deo, J.-M. Jehng, and D. S. Kim, Reactivity of V2O5 catalysts for the selective catalytic reduction of NO by NH3: Influence of vanadia loading, H2O, and SO2, J. Catal., 161, 247-253 (1996). https://doi.org/10.1006/jcat.1996.0182
  13. S. Youn, I. Song, and D. H. Kim, Roles of promoters in V2O5/TiO2 catalysts for selective catalytic reduction of NOx with NH3: Effect of order of impregnation, J. Nanosci. Nanotechnol., 16, 4350-5356 (2016). https://doi.org/10.1166/jnn.2016.11017
  14. K. J. Lee, P. A. Kumar, M. S. Maqbool, K. N. Rao, K. H. Song, and H. P. Ha, Ceria added Sb-V2O5/TiO2 catalysts for low temperature NH3 SCR: Physico-chemical properties and catalytic activity, Appl. Catal. B: Environ., 142-143, 705-717 (2013). https://doi.org/10.1016/j.apcatb.2013.05.071
  15. H. H. Phil, M. P. Reddy, P. A. Kumar, L. K. Ju, and J. S. Hyo, SO2 resistant antimony promoted V2O5/TiO2 catalyst for NH3-SCR of NOx at low temperatures, Appl. Catal. B: Environ., 78, 301-308 (2008). https://doi.org/10.1016/j.apcatb.2007.09.012
  16. N. Yang, R. Guo, W. Pan, Q. Chen, Q. Wang, and C. Lu, The promotion effect of Sb on the Na resistance of Mn/TiO2catalyst for selective catalytic reduction of NO with NH3, Fuel, 169, 87-92 (2016). https://doi.org/10.1016/j.fuel.2015.12.009
  17. J. H. Shin and S. C. Hong, The effect of calcination temperature of RuTi catalysts on reaction activity of NH3-SCO, Appl. Chem. Eng., 31, 200-207 (2020).
  18. A. Barbaro, S. Larrondo, S. Duhalde, and N. Amadeo, Effect of titanium-doping on the properties of vanadium antimonate catalysts, Appl. Catal. A: Gen., 193, 277-283 (2000). https://doi.org/10.1016/S0926-860X(99)00445-7
  19. S. Larrondo, B. Irigoyen, G. Baronetti, and N Amadeo, Vanadium antimonate as a partial oxidation catalyst, Appl. Catal. A: Gen., 250, 279-285 (2003). https://doi.org/10.1016/S0926-860X(03)00255-2
  20. D. H. Kim, D. W. Kwon, and S. C. Hong, Structural characteristics of V-based catalyst with Sb on selective catalyic NOx reduction with NH3, Appl. Surf. Sci., 538, 148088 (2021). https://doi.org/10.1016/j.apsusc.2020.148088
  21. A. M. Beale, I. Lezcano Gonzalez, T. Maunula, and R. G. Palgrave, Development and characterization of thermally stable supported V-W-TiO2 catalysts for mobile NH3-SCR applications, Catal. Struct. React., 1, 25-34 (2015). https://doi.org/10.1179/2055075814Y.0000000005
  22. N. Y. Topsoe, J. A. Dumesic, and H. Topsoe, Vanadia/TiO2 catalysts for selective catalysts reduction of nitric oxide by ammonia, J. Catal., 151, 241-252 (1995). https://doi.org/10.1006/jcat.1995.1025
  23. C. J. Woo, N. I. Sik, and H. S. Won, Effect of promoters including tungsten and barium on the thermal stability of V2O5/sulfated TiO2 catalyst for NO reduction by NH3, Catal. Today, 111, 242-247 (2006). https://doi.org/10.1016/j.cattod.2005.10.033
  24. M. A. Vuurman, I. E. Wachs, and A. M. Hirt, Structural determination of supported V2O5-WO3/TiO2 catalysts by in situ Raman spectroscopy and X-ray photoelectron spectroscopy, J. Phys. Chem., 95, 9928-9937 (1991). https://doi.org/10.1021/j100177a059
  25. F. Montilla, E. Morallon, A. De Battisti, S. Barison, S. Daolio, and J. L. Vazquez, Preparation and characterization of antimony-doped Tin dioxide electrodes. 3. XPS and SIMS characterization, J. Phys. Chem. B, 108, 15976-15981 (2004). https://doi.org/10.1021/jp048674+
  26. T. Krishnakumar, R. Jayaprakash, N. Pinna, A. R. Phani, M. Passacantando, and S. Santucci, Structural, optical and electrical characterization of antimony-substituted tin oxide nanoparticles, J. Phys. Chem. Solids, 70, 993-999 (2009). https://doi.org/10.1016/j.jpcs.2009.05.013
  27. S. H. Choi, S. P. Cho, J. Y. Lee, S. H. Hong, S. C. Hong, and S. I. Hong, The influence of non-stoichiometric species of V/TiO2 catalysts on selective catalytic reduction at low temperature, J. Mol. Catal. A Chem., 304, 166-173 (2009). https://doi.org/10.1016/j.molcata.2009.02.008
  28. N. Y. Topsoe, J. A. Dumesic, and H. Topsoe, Vanadia/TiO2 catalysts for selective catalysts reduction of nitric oxide by ammonia, J. Catal., 151, 241-252 (1995). https://doi.org/10.1006/jcat.1995.1025