DOI QR코드

DOI QR Code

A Green Preparation of Drug Loaded PAc-β-CD Nanoparticles from Supercritical Fluid

초임계 유체를 이용한 약물이 담지된 PAc-β-CD 나노 입자의 친환경적인 제조

  • Jang, Min Ki (Department of Image Science & Engineering, Pukyong National University) ;
  • Kim, Yong Hun (Department of Image Science & Engineering, Pukyong National University) ;
  • Kim, Dong Woo (Composite Materials Application Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST)) ;
  • Lee, Si Yun (Department of Image Science & Engineering, Pukyong National University) ;
  • Lim, Kwon Taek (Department of Image Science & Engineering, Pukyong National University)
  • 장민기 (부경대학교 융합디스플레이공학과) ;
  • 김용훈 (부경대학교 융합디스플레이공학과) ;
  • 김동우 (한국과학기술연구원 전북분원 복합소재기술연구소) ;
  • 이시윤 (부경대학교 융합디스플레이공학과) ;
  • 임권택 (부경대학교 융합디스플레이공학과)
  • Received : 2019.09.12
  • Accepted : 2019.12.16
  • Published : 2020.03.31

Abstract

Rapid expansion of supercritical solution (RESS) process was used to make molsidomine (MOL) loaded peracetyl-β-cyclodextrin (PAc-β-CD) nanoparticles, which were collected into the air. The effect of the concentration of the drug PAc-β-CD (0.5 and 1 wt%), extraction temperature (45 ~ 60 ℃), nozzle length (5 ~ 20 mm) and internal diameter (ID) (50 ~ 150 μm) of a capillary, and spray distance on the particle size and morphology of the resulting particles were investigated. The interaction of a drug and PAc-β-CD was confirmed by 1H-NMR spectroscopy while the particle size was measured by means of a scanning electron microscope. It was found that increasing the temperature from 45 ℃ to 60 ℃ and decreasing the nozzle diameter from 150 μm to 50 μm had an increasing effect on the average particle size, while increasing the spray distance led to a decrease in the average particle size at a constant pressure of 34.5 MPa and temperature of 45 ℃. With 0.5 wt% of PAc-β-CD, the capillary nozzle of short length (5 mm) and small ID (50 μm) gave the smallest size (165 nm). The obtained nanoparticles showed increased dispersity and solubility in oil. The oil suspension of the inclusion complex showed increased sustainability, which can increase the in-vitro controlled release time of the drug.

초임계 용액 급속팽창법(rapid expansion of supercritical solution, RESS)으로 몰시도민(molsidomine, MOL) 약물이 로딩 된 퍼아세틸-β-사이클로덱스트린(PAc-β-CD) 나노 입자를 제조하였다. 입자는 초임계 용액을 공기 중으로 급속하게 팽창시켜 제조하였다. MOL과 PAc-β-CD (0.5, 1 wt%)의 농도, 추출 온도(45 ~ 60 ℃), 모세관 노즐의 길이(5 ~ 20 mm) 및 내경(Inner diameter, ID) (50 ~ 150 μm), 그리고 분사 거리의 변화에 따라 형성된 입자의 크기와 모폴로지를 조사하였다. MOL과 PAc-β-CD의 상호작용을 1H-NMR 분광법으로 확인하였고, 입자 크기는 주사 전자 현미경으로 측정하였다. 온도를 45 ℃에서 60 ℃로 올리거나 노즐 내경을 150 μm에서 50 μm로 줄이면 입자 평균 크기가 증가하였으며, 반면에 일정한 압력(34.5 MPa)과 온도(45 ℃)에서 분사 거리를 늘리면 입자 평균 크기가 감소하는 효과를 나타내었다. 0.5 wt%의 PAc-β-CD 농도로서 초임계 공정을 진행한 결과, 모세관의 길이가 짧고(5 mm) 내경이 작은(50 μm) 조건에서 크기가 가장 작은(165 nm) 입자가 얻어졌다. 제조한 나노 입자는 오일 내에서 분산성과 용해도가 증가하였으며, 포접체 입자에서 MOL이 방출되는 시간이 지연되는 것을 확인하였다.

Keywords

References

  1. Lee, M. Y., Ganpathy, H. S., and Lim, K. T., "Controlled Drug Release Applications of the Inclusion Complex of Peracetylated-${\beta}$-Cyclodextrin and Water-Soluble Drugs Formed in Supercritical Carbon Dioxide," J. Phys. Chem. Solids, 71, 630-633 (2010). https://doi.org/10.1016/j.jpcs.2009.12.054
  2. Ganapathy, H. S., Lee, M. Y., Park, C., and Lim, K. T., "Sustained Release Applications of a Fluoroalkyl Ester-Functionalized Amphiphilic Cyclodextrin by Inclusion Complex Formation with Water-Soluble Drugs in Supercritical Carbon Dioxide," J. Fluorine Chem., 129, 1162-1166 (2008). https://doi.org/10.1016/j.jfluchem.2008.09.005
  3. Ganapathy, H. S., Woo, M. H., Gal, Y. S., and Lim, K. T., "Inclusion Complex Formation of Water Soluble Drug, Captopril, and Peracetylated-${\beta}$-Cyclodextrin in Supercritical $CO_2$ for Controlled Release Applications," Key Eng. Mater., 342, 489-492 (2007). https://doi.org/10.4028/www.scientific.net/KEM.342-343.489
  4. Sultana, T., Jung, J. M., Hong, S. S., Lee, W. K., Gal, Y. S., Kim, H. G., and Lim, K. T., "Characteristic Profiles of the Inclusion Complex of Omeprazole/Peracylated-${\beta}$-Cyclodextrin Formed in Supercritical Carbon Dioxide," J. Incl. Phenom. Macrocycl. Chem., 72, 207-212 (2012). https://doi.org/10.1007/s10847-011-9966-x
  5. Lim, K. T., Ganapathy, H. S., Lee, M. Y., Yuvaraj, H., Lee, W. K., and Heo, H., "A Facile One-Pot Synthesis of Novel Amphiphilic Perfluoroalkyl Ester Functionalized ${\gamma}$-Cyclodextrin and Complex Formation with Anionic Surfactants," J. Fluorine Chem., 127, 730-735, (2006). https://doi.org/10.1016/j.jfluchem.2006.02.004
  6. Lim, K. T., Ganapathy, H. S., Hwang, H. S., Kim, J. T., Ju, C. S., and Johnston, K., "Novel Semiconducting Polymer Particles by Supercritical Fluid Process," Macromol. Rapid. Commun., 26, 1779-1783 (2005). https://doi.org/10.1002/marc.200500438
  7. Kim, J. H., Ganapathy, H. S., Hong, S. S., Gal, Y. S., and Lim, K. T., "Preparation of Polyacrylonitrile Nanofibers as a Precursor of Carbon Nanofibers by Supercritical fluid process," J. Supercrit Fluids, 47, 103-107 (2008). https://doi.org/10.1016/j.supflu.2008.05.011
  8. Kim, Y. H., Choi, H. W., Kang, K. M., Karakin, A., and Lim, K. T., "The Removal of Si3N4 Particles from the Wafer Surface Using Supercritical Carbon Dioxide Cleaning," Clean Technol., 24(3), 157-165 (2018). https://doi.org/10.7464/ksct.2018.24.3.157
  9. Kim, D. W., Heo, H., and Lim, K. T., "Study of Supercritical Carbon Dioxide/n-Butyl Acetate Co-solvent System with High Selectivity in Photoresist Removal Process," Clean Technol., 23(4), 357-363 (2017). https://doi.org/10.7464/KSCT.2017.23.4.357
  10. Ganapathy, H. S., Kim, J. H., Hong, S. S., and Lim, K. T., "Preparation of Semi-Conducting Polymeric Nanoparticles by Supercritical Carbon Dioxide RESOLV Process," Int. J. Biomed. Nanosci. Nanotechnol., 8, 4707-4710 (2008). https://doi.org/10.1166/jnn.2008.IC13
  11. Yim, J. H., Kim, W. S., and Lim, J. S., "Recrystallization of Adefovir Dipivoxil Particles using the Rapid Expansion of Supercritical Solutions (RESS) Process," J. Supercrit. Fluids, 82, 168-176 (2013). https://doi.org/10.1016/j.supflu.2013.07.009
  12. Heang, Z., Sun, G., Chiew, Y. C., and Kawi, S., "Formation of Ultrafine Aspirin Particles through Rapid Expansion of Supercritical Solutions (RESS)," Powder Technol., 160, 127-134 (2005). https://doi.org/10.1016/j.powtec.2005.08.024
  13. Charpentier, P. A., Jia, M., and Lucky, A. R. A., "Study of the RESS Process for Producing Beclomethasone-17,21-Dipropionate Particles Suitable for Pulmonary Delivery," AAPS. PharmSciTech., 9, 39-46 (2008). https://doi.org/10.1208/s12249-007-9004-x
  14. Bolten, D., and Turk, M., "Micronisation of Carbamazepine through Rapid Expansion of Supercritical Solution (RESS)," J. Supercrit. Fluids, 62, 32-40 (2012). https://doi.org/10.1016/j.supflu.2011.06.014
  15. Hezave, A. Z., Aftab, S., and Esmaeilzadeh, F., "Micronization of Creatine Monohydrate via Rapid Expansion of Supercritical Solution (RESS)," J. Supercrit. Fluids, 55, 316-324 (2010). https://doi.org/10.1016/j.supflu.2010.05.009
  16. Turk, M., and Bolten, D., "Formation of Submicron Poorly Water-Soluble Drugs by Rapid Expansion of Supercritical Solution (RESS): Results for Naproxen," J. Supercrit. Fluids, 55, 778-785 (2010). https://doi.org/10.1016/j.supflu.2010.09.023
  17. Asghari, I., and Esmaeilzadeh, F., "Formation of Ultrafine Deferasirox Particles via Rapid Expansion of Supercritical Solution (RESS process) using Taguchi approach," Int. J. Pharm., 433, 149-156 (2012). https://doi.org/10.1016/j.ijpharm.2012.05.005
  18. Baseri, H., and Lotfollahi, M. N., "Effects of Expansion Parameters on Characteristics of Gemfibrozil Powder Produced by Rapid Expansion of Supercritical Solution Process," Powder Technol., 253, 744-750 (2014). https://doi.org/10.1016/j.powtec.2013.12.046
  19. Lin, P. C., Su, C. S., Tang, M., and Chen, Y. P., "Micronization of Ethosuximide using the Rapid Expansion of Supercritical Solution (RESS) Process," J. Supercrit. Fluids, 72, 84-89 (2012). https://doi.org/10.1016/j.supflu.2012.08.013
  20. Hiendrawan, S., Veriansyah, B., and Tjandrawinata, R. R., "Preparation of Fenofibrate Microparticles using Top-Down and Bottom-Up Processes," Procedia Chem., 9, 257-264 (2014). https://doi.org/10.1016/j.proche.2014.05.031
  21. Chingunpitak, J., and Puttipipatkhachorn, S., "Micronization of Dihydroartemisinin by Rapid Expansion of Supercritical Solutions," Drug Dev. Ind. Pharm., 34, 609-617 (2008). https://doi.org/10.1080/03639040701833682
  22. He, S., Zhang, Z., Xu, F., Zhang, S., and Lei, Z., "Micronization of Magnolia Bark Extract with Enhanced Dissolution Behavior by Rapid Expansion of Supercritical Solution," Chem. Pharm. Bull., 58(2), 154-159 (2010). https://doi.org/10.1248/cpb.58.154
  23. Su, C. S., Tang, M., and Chen, Y. P., "Micronization of Nabumetone using the Rapid Expansion of Supercritical Solution (RESS) Process," J. Supercrit. Fluids, 50, 69-76 (2009). https://doi.org/10.1016/j.supflu.2009.04.013
  24. Paliwal, R., Babu, R. J., and Palakurthi, S., "Nanomedicine Scale-up Technologies: Feasibilities and Challenges," AAPS. PharmSciTech., 15(6), 1527-1534 (2014). https://doi.org/10.1208/s12249-014-0177-9
  25. Hiendrawan, S., Veriansyah, B., and Tjandrawinata, R. R., "Micronization of Fenofibrate by Rapid Expansion of Supercritical Solution," J. Ind. Eng. Chem., 20, 54-60 (2014). https://doi.org/10.1016/j.jiec.2013.04.027