DOI QR코드

DOI QR Code

Synthesis of Ti-SBA-15 Doped with Lanthanide Ions and Their Photocatalytic Activity

란탄족 이온이 도핑된 Ti-SBA-15의 합성 및 그들의 광촉매 활성

  • Hong, Seong-Soo (Department of Chemical Engineering, Pukyong National University)
  • Received : 2019.11.25
  • Accepted : 2019.12.16
  • Published : 2020.03.31

Abstract

Ti-SBA-15 catalysts doped with lanthanide ions (Ln/Ti-SBA-15) were successfully synthesized using conventional hydrothermal method. In addition, they were characterized by XRD, FT-IR, DRS, BET, and PL. The activity of these materials on the photocatalytic decomposition of methylene blue under ultraviolet light irradiation was also examined. Ti-SBA-15 catalysts doped with various lanthanide ions maintained their mesoporous structure. The pore size and pore volume of Ln/Ti-SBA-15 materials decreased but their surface area increased upon the doping of lanthanide ion. Ln/Ti-SBA-15 materials exhibited the type IV nitrogen isotherm with desorption hysteresis loop type H2, which was characteristic of mesoporous materials. The size of hysteresis increased in the doping of lanthanide ions on Ti-SBA-15 material. There was no absorption in the visible region (> 400 nm) regardless of the doping of lanthanide ions to TiO2 particles, while the broad bands at 220 nm appeared at the Ln/Ti-SBA-15 samples, indicating the framework incorporation of titanium into SBA-15. 1 mol% Pr/ Ti-SBA-15 catalysts showed the highest photocatalytic activity on the decomposition of methylene blue but the Ti-SBA-15 catalysts doped with Eu, Er, and Nd ions showed lower activity compared to pure Ti-SBA-15 catalyst. The PL peaks appeared at about 410 nm at all catalysts while the excitonic PL signal was proportional to the photocatalytic activity for the decomposition of methylene blue.

란탄족 이온이 도핑된 Ti-SBA-15 촉매를 수열합성법으로 제조하였다. 또한 이들의 특성을 X선 회절기(X-ray diffraction, XRD), Fourier-transform infrared spectroscopy (FT-IR), Diffuse reflectance spectroscopy (DRS), 가스흡착법(Brunauer-Emmett-Teller, BET) 및 Photoluminescence spectrometer (PL) 등을 이용하여 조사하였고, 이 촉매를 사용하여 자외선 조사하에서 메틸렌블루에 대한 광분해 반응성을 조사하였다. 란탄족 이온이 도핑과 무관하게 Ti-SBA-15 촉매는 메조동공체 구조를 유지하고 있으며, 란탄족 이온이 치환됨에 따라 기공의 크기와 기공의 부피가 줄어들었으며 표면적은 오히려 증가하였다. 란탄족 이온의 도핑과 무관하게 전체적으로 IV형의 흡착등온선과 H2형 히스테리시스를 보여주고 있으나, 란탄족 이온이 도핑되면 히스테리시스의 크기가 커지는 것을 볼 수 있다. 란탄족 이온의 도핑과 무관하게 가시광 영역에서의 흡수밴드는 나타나지 않으며 220 nm에서 다소 폭이 넓은 흡수피크가 나타나고 있다. 이것은 SBA-15 골격 내에 Ti가 존재한다는 것을 의미하고 있다. 메틸렌블루의 광분해 반응에서 Pr 이온을 첨가 시킨 것이 가장 높은 광촉매 활성을 보여주었으며, Er, Eu 및 Nd 등의 란탄족 이온이 치환되면 순수한 Ti-SBA-15 촉매보다 오히려 활성이 떨어진 것을 볼 수 있다. 모든 촉매들은 410 nm 부근에서 강하고 넓은 PL 흡수밴드가 나타났으며, 이 피크의 세기가 커질수록 광분해 활성이 증가하는 것으로 나타났다.

Keywords

References

  1. Matsuda, S., and Kato, A., "Titanium Oxide Based Ctalysts-a Review," Appl. Catal. 8, 149-165 (1983). https://doi.org/10.1016/0166-9834(83)80076-1
  2. Kamat, P. V., and Dimitrijevic, N. M., "Colloidal Semiconductors as Photocatalysts for Solar Energy Conversion," Sol. Energy, 44, 83-98 (1990). https://doi.org/10.1016/0038-092X(90)90070-S
  3. Notari, B., "Microporous Crystalline Titanium Silicates," Adv. Catal., 41, 253-334 (1996).
  4. Zhao, D., Huo, Q., Feng, J., Chmelka, B. F., and Stucky, G.D., "Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures," J. Am. Chem. Soc., 120, 6024-6036 (1998). https://doi.org/10.1021/ja974025i
  5. Newalkar, B. L., Olanrewaju, J., and Komarneni, S., "Direct Synthesis of Titanium-Substituted Mesoporous SBA-15 Molecular Sieve under Microwave-Hydrothermal Conditions," Chem. Mater., 13, 552-557 (2001). https://doi.org/10.1021/cm000748g
  6. Jung, Y. S., Baek, S. H., Lim, K. T., Park, S. S., Lee, G. D., and Hong, S. S., "Synthesis of Ti-containing SBA-15 Materials and Studies on Their Photocatalytic Decomposition of Orange II," Catal. Today, 131, 437-443 (2008). https://doi.org/10.1016/j.cattod.2007.10.072
  7. Anderson, C., and Bard, A. J., "Improved Photocatalytic Activity and Characterization of Mixed $TiO_2/SiO_2$ and $TiO_2/Al_2O_3$ Materials," J. Phys. Chem. B., 101, 2611-2616 (1997). https://doi.org/10.1021/jp9626982
  8. Ogawa, S., Hu, K., and Band, A. J., "Photoelectrochemistry of Films of Quantum Size Lead Sulfide Particles Incorporated in Self-Assembled Monolayers on Gold," J. Phys. Chem. B., 101, 5707-5711 (1997). https://doi.org/10.1021/jp970737j
  9. Kim, D. H., Woo, S. I., Moon, S. H., Kim, H. D., Kim, B. Y., Cho, H. J., Joh, Y. G., and Kim, E. C., "Effect of Co/Fe Co-doping in $TiO_2$ Rutile Prepared by Solid State Reaction," Solid State Commun., 136, 554-558 (2005). https://doi.org/10.1016/j.ssc.2005.09.012
  10. Iliev, V., Tomova, D., Bilyarska, L., Eliyas, A., and Petrov, L., "Photocatalytic properties of $TiO_2$ modified with platinum and silver nanoparticles in the degradation of oxalic acid in aqueous solution," Appl. Catal. B., 63, 266-271 (2006). https://doi.org/10.1016/j.apcatb.2005.10.014
  11. Li, G., and Zhao, X. S., "Characterization and Photocatalytic Properties of Titanium-Containing Mesoporous SBA-15," Ind. Eng. Chem. Res., 45, 3569-3573 (2006). https://doi.org/10.1021/ie0514253
  12. Alba, M. D., Luan, Z., and Klinowski, J., "Titanosilicate Mesoporous Molecular Sieve MCM-41: Synthesis and Characterization," J. Phys. Chem., 100, 2178-2182 (1996). https://doi.org/10.1021/jp9515895
  13. Saif, M., and Abdel-Mottaleb, M. S. A., "Titanium Dioxide Nanomaterial Doped with Trivalent Lanthanide Ions of Tb, Eu and Sm: Preparation, Characterization and Potential Applications," Inorganica Chimica Acta, 360, 2863-2874 (2007). https://doi.org/10.1016/j.ica.2006.12.052
  14. Lopez, T., Rojas, F., Alexander-Katz, R., Galindo, F., Balankin, A., and Buljan, A., "Porosity, Structural and Fractal Study of Sol-gel $TiO_2-CeO_2$ Mixed Oxides," J. Solid State Chem., 177, 1873-1885 (2004). https://doi.org/10.1016/j.jssc.2004.01.013
  15. Tuel, A., "Synthesis, Characterization, and Catalytic Properties of Titanium Silicoaluminophosphate TAPSO-5," Zeolites, 15, 228-235 (1995). https://doi.org/10.1016/0144-2449(94)00036-R
  16. Boccuti, M., Rao, K. M., Zecchina, A., Leofanti, G., Petrini, A., Morterra, C., Zecchina, A., and Costa, G., "Structure and Reactivity of Surfaces", Elsevier, Amsterdam (1989).
  17. Uno, M., Kosuga, A., Okui, M., Horisaka, K., and Yamanaka, S., "Photoelectrochemical Study of Lanthanide Titanium Oxides, $Ln_2Ti_2O_7$ (Ln=La, Sm, and Gd)," J. Alloys Compd., 400, 270-275 (2005) https://doi.org/10.1016/j.jallcom.2005.04.004
  18. Turchi, C. S., and Ollis, D. F., "Photocatalytic Degradation of Organic Water Contaminants: Mechanisms Involving Hydroxyl Radical Attack," J. Catal., 122, 178-192 (1990). https://doi.org/10.1016/0021-9517(90)90269-P