DOI QR코드

DOI QR Code

Influence of Fluid Height and Structure width ratio on the Dynamic Behavior of Fluid in a Rectangular Structure

사각형 구조물에 저장된 유체의 동적거동에 유체높이와 구조물 폭의 비가 미치는 영향

  • 박건 (충북대학교 토목공학부) ;
  • 윤형철 (충북대학교 토목공학과) ;
  • 홍기남 (충북대학교 토목공학과)
  • Received : 2020.09.24
  • Accepted : 2020.10.29
  • Published : 2020.10.30

Abstract

In the case of an earthquake, the fluid storage structure generates hydraulic pressure due to the fluctuation of the fluid. At this time, the hydraulic pressure of the fluid changes not only the peaked acceleration of the earthquake but also the sloshing height of the fluid free water surface. Factors influencing this change in load include the shape of the seismic wave, the maximum seismic strength, the size of the fluid storage structure, the width of the structure, and the height of the fluid. In this study, the effect of the ratio between the height of the fluid and the width of the structure was investigated on the fluctuation characteristics of the fluid. 200mm and 140mm of fluid were placed in a water storage tank with a width of 500mm, and a real seismic wave was applied to measure the shape of the fluctuation of the fluid free water surface. The similarity between the experiment and the analysis was verified through the S.P.H(Smoothed Particle Hydrodynamic) technique, one of the numerical analysis techniques. It was confirmed that the free water surface of the fluid showed a similar shape, through comparison of experiment and analysis. And based on this results, SPH technique was applied to analyze the fluctuation shape of the fluid free water surface while varying the ratio between the fluid height and the structure width. An equation to predict the maximum and minimum heights of the fluid free water surface during an earthquake was proposed, and it was confirmed that the error between the maximum and minimum heights of the fluid free water surface predicted by the proposed equation was within a maximum of 3%.

유체 저장 구조물은 지진 시 유체의 출렁임에 의해 동수압이 발생한다. 이 때, 유체의 동수압은 지진의 강도뿐만 아니라 유체 자유수면의 출렁임 높이(sloshing height)에 의해서도 변화한다. 이러한 하중 변화에 영향을 미치는 인자로는 지진파의 형상, 최대지진강도, 유체 저장구조물의 크기, 구조물의 폭, 유체의 높이 등이 있으며, 본 연구에서는 유체높이와 구조물 폭의 비가 유체의 출렁임 특성에 미치는 영향을 규명하고자 한다. 이를 위하여 구조물의 폭이 500mm인 수조에 구조물의 전체 높이 대비 50%인 200mm와 35%인 140mm의 유체를 담아 실지진파를 적용시켜 유체 자유수면의 출렁임 높이를 측정하였다. 또한 수치해석기법 중 하나인 SPH기법을 통하여 실험과 해석의 유사성을 검증하였다. 실험과 해석의 비교를 통하여 유체의 자유 수면이 유사한 형상을 나타냄을 확인하였으며, 이를 바탕으로 SPH기법을 적용하여 유체높이와 구조물 폭의 비를 다양하게 변화시키면서 유체 자유수면의 출렁임 형상을 분석하였다. 이상의 결과를 바탕으로 지진시 유체 자유수면의 최대 높이 및 최소높이를 예측할 수 있는 식을 제안하였으며, 제안식에 의해 예측된 유체 자유수면의 최대 높이 및 최소 높이의 오차는 최대 3% 이내임을 확인하였다.

Keywords

References

  1. Kim, Y.S., Kim, J.M., Choun Y.S. and Yun, C.B. (1992), Seismic Analysis of Rectangular Liquid Storage Structures Using Fluid Elements, Journal of Ocean Engineering and Technology, Vol.6 No.2, pp.206-214
  2. George W. Housner (1957), Dynamic Pressure on Accelerated Fluid Container, Bulletin of the Seismological Society of America, Vol.47, No.1, pp.15-35 https://doi.org/10.1785/BSSA0470010015
  3. George W. Housner (1963), The Dynamic Behavior of Water Tanks, Bulletin of the Seismological Society of America, Vol.53, No.1, pp.381-387 https://doi.org/10.1785/BSSA0530020381
  4. Lee, C.G. and Yun, C.B.(1987), Seismic Analysis of Liquid Storage Tanks Considering Shell Flexibility, Journal of the Korean Society of Civil Engineers, Vol.7 No.4, pp.21-29
  5. A. S. Veletsos (1974), Seismic Effects in Flexible Liquid Storage Tanks, Proc. Int. Assoc. for Earthquake Eng., Rome, Italy, 1, pp.630-639
  6. A. S. Veletsos and J. Y. Yang (1977), Earthquake Response of Liquid Storage Tanks, Adv. Civil Eng. Through Eng. Mech, ASEC, pp.1-24
  7. M. A. Haroun (1983), Vibration Studies and Test of Liquid Storage Tanks, Earthquake Engineering and Structural Dynamic, Vol.11, pp.119-206 https://doi.org/10.1002/eqe.4290110204
  8. Lay, K. S. (1993), Seismic Coupled Modeling of Axisymmetric Tanks Containing Liquid, Journal of the Technical Council of ASCE, pp.747-763
  9. U. S. Atomic Energy Commision, (1963), Nuclear Reactors and Earthquakes, TID-7024, Washington, D. C., pp.367-390
  10. Matej Vesenjak, Heiner Mullerschon, Alexander Hummel and Zoran Ren, (2004), Simulation of Fuel Sloshing - Comparative Study, LS-DYNA Anwenderforum, Bamberg
  11. Korea Electric Power Industry Code, KEPIC STB (2005), Seismic Analysis and Seismic Capacity Evaluation of Nuclear Facilities, 2005 Edition and 2008 Supplement.
  12. U.S NRC (1973a), Design Response Spectra for Seismic Design of Nuclear Power Plants, Regulatory Guide 1.60, Rev. 1.
  13. U.S NRC (1973b), Damping Values for Seismic Design of Nuclear Power Plants, Regulatory Guide 1.61, Rev. 1.
  14. U.S NRC (1978), Development of Floor Design Response Spectra for Seismic Design of Floor Supported Equipment or Components, Regulatory Guide 1.122, Rev. 1.
  15. Kim, Y.I., Nam, B.W., and Kim, Y.H. (2007), Study on the Effects of Computation Parameters in SPH Method, Journal of the Society of Naval Architects of Korea, Vol.44 No.4, pp.398-407 https://doi.org/10.3744/SNAK.2007.44.4.398