DOI QR코드

DOI QR Code

Vibrational Properties of High Damping Polymer Concrete with Hybrid Damper

복합구조 댐퍼를 적용한 고 감쇠 폴리머 콘크리트의 진동 특성에 관한 연구

  • Received : 2020.10.16
  • Accepted : 2020.10.30
  • Published : 2020.10.30

Abstract

In the case of a concrete structure, vibration problems occur under various conditions because of its low damping performance. To solve this problem, a study on the high damping performance of the polymer concrete with hybrid damper has recently been increased. Since water is not used in polymer concrete, the curing time is short. Also, the physical properties and dynamic properties of polymer concrete are quite excellent. So polymer concrete is widely expected to be used for structural materials. The hybrid damper is the structural system that consists of steel balls and viscous fluid inside the pipe which is embedded in polymer concrete. It can reduce the structural vibrations through the energy dissipation mechanism of viscous fluid and steel balls. In this study, the physical and dynamic properties of polymer concrete with hybrid damper were compared with ordinary concrete. As a result, the elasticity coefficient and the strength of the polymer concrete with hybrid damper were so much excellent. In particular, the tensile strength was 6.5 to 10 times higher than ordinary concrete. The frequency response function and damping ratio were also compared. As a result, the dynamic Stiffness of the polymer concrete was 25% greater than that of ordinary concrete. The damping ratio of the polymer concrete was approximately 3 times higher than that of ordinary concrete. Although the dynamic stiffness of the hybrid damper showed similar tendency, the damping ratio was 3.5 times higher than that of ordinary concrete. Therefore, the polymer concrete with hybrid damper was superior to ordinary concrete.

구조물을 구성하고 있는 콘크리트의 경우, 진동에 대한 감쇠성능이 작아, 구조물에서 발생하는 다양한 진동 문제를 해결하는데 어려움이 있으므로, 이러한 문제를 해결하기 위해, 최근 폴리머 콘크리트와 복합구조 댐퍼를 혼합하여 댐핑 성능을 크게 증가시킨 고 감쇠 시스템에 대한 연구가 활발히 진행되고 있다. 한편, 폴리머 콘크리트는 배합 시, 시멘트와 물을 사용하지 않아, 경화시간이 매우 짧고, 물리적 특성 및 동특성 등이 매우 우수하여 진동저감이 요구되는 건축구조물에의 폭넓은 활용이 기대되는 구조재료이며, 복합구조 댐퍼는 파이프 관 내부에 위치한 쇠구슬의 충돌에 따른 운동에너지 소산과 점성유체의 에너지 소산 방식을 통해 진동을 저감하는 구조시스템이라 할 수 있다. 본 연구에서는 폴리머 콘크리트와 복합구조 댐퍼의 물리적, 동적 특성을 일반 콘크리트와 비교하였는데, 물리적 특성의 경우, 폴리머 콘크리트가 탄성계수 및 강도 특성에서 상당히 우수한 결과를 보였으며, 특히 인장강도는 6.5~10배 이상 큰 차이를 보였다. 또한, 동적 특성의 경우도 폴리머 콘크리트는 일반 콘크리트 대비 동적강성은 25%, 감쇠비는 약 3배 정도 증가하였으며, 복합구조 댐퍼는 동적강성은 비슷한 경향을 보였지만 감쇠비는 3.5배 이상 증가하여, 일반 콘크리트보다 진동 감쇠성능이 우수한 것으로 나타났다.

Keywords

References

  1. W. G. Wong, Ping Fang, J. K. Pan. (2003), Dynamic properties impact toughness and abrasiveness of polymer-modified pastes by using nondestructive tests, Cement and Concrete Research, 33(9), 1371-1374. https://doi.org/10.1016/S0008-8846(03)00069-3
  2. F. Cortes and G. Castillo. (2007), Comparison between the dynamical properties of polymer concrete and grey cast iron for machine tool applications, Material and Design, 28(5), 1461-1466. https://doi.org/10.1016/j.matdes.2006.03.012
  3. I.Y.Jang, H.B.Lee, K.J.Byun. (1992), Experimental study on the material characteristics and flexural behavior of ultra high strength concrete, Journal of the Korea Concrete Institute, 4(2), 111-118.
  4. Cho, S. G., So, G. H., and Park, W. K. (2013), Investigation of Damping Ratio of Steel Plate Concrete (SC) Shear Wall by Lateral Loading Test & Impact Test, Journal of the Earthquake Engineering Society of Korea, 17(2), 79-88. https://doi.org/10.5000/EESK.2013.17.2.079
  5. Lee, K. H., Kim, H. C., Hong, W. K., and Lee, Y. H. (2007), Capacity of Concrete Filled Carbon Tube Columns Based on the Comparison of Ductility and Energy Dissipation Capacity, Journal of the Earthquake Engineering Society of Korea, 11(1), 29-35. https://doi.org/10.5000/EESK.2007.11.1.029
  6. Yang, W. S., Seong, Y. U., Jeong, S. Y., and Park, J. H. (2018), Vibration reduction using meta-structures composed of tuned dynamic absorbers employing mass impacts, Composite Structures, 183(1), 216-220. https://doi.org/10.1016/j.compstruct.2017.02.083
  7. Jie, J., Yang, W. S., Koh, H. I., and Pank, J. H.(2020), Development of tuned particle impact damper for reduction of transient railway vibrations, Applied Acoustics, 169(1), [107487]. https://doi.org/10.1016/j.apacoust.2020.107487