DOI QR코드

DOI QR Code

Endothelial Ca2+ signaling-dependent vasodilation through transient receptor potential channels

  • Hong, Kwang-Seok (Department of Physical Education, College of Education, Chung-Ang University) ;
  • Lee, Man-Gyoon (Sports Medicine and Science, Graduate School of Physical Education, Kyung Hee University)
  • Received : 2020.02.04
  • Accepted : 2020.04.14
  • Published : 2020.07.01

Abstract

Ca2+ signaling of endothelial cells plays a critical role in controlling blood flow and pressure in small arteries and arterioles. As the impairment of endothelial function is closely associated with cardiovascular diseases (e.g., atherosclerosis, stroke, and hypertension), endothelial Ca2+ signaling mechanisms have received substantial attention. Increases in endothelial intracellular Ca2+ concentrations promote the synthesis and release of endothelial-derived hyperpolarizing factors (EDHFs, e.g., nitric oxide, prostacyclin, or K+ efflux) or directly result in endothelial-dependent hyperpolarization (EDH). These physiological alterations modulate vascular contractility and cause marked vasodilation in resistance arteries. Transient receptor potential (TRP) channels are nonselective cation channels that are present in the endothelium, vascular smooth muscle cells, or perivascular/sensory nerves. TRP channels are activated by diverse stimuli and are considered key biological apparatuses for the Ca2+ influx-dependent regulation of vasomotor reactivity in resistance arteries. Ca2+-permeable TRP channels, which are primarily found at spatially restricted microdomains in endothelial cells (e.g., myoendothelial projections), have a large unitary or binary conductance and contribute to EDHFs or EDH-induced vasodilation in concert with the activation of intermediate/small conductance Ca2+-sensitive K+ channels. It is likely that endothelial TRP channel dysfunction is related to the dysregulation of endothelial Ca2+ signaling and in turn gives rise to vascular-related diseases such as hypertension. Thus, investigations on the role of Ca2+ dynamics via TRP channels in endothelial cells are required to further comprehend how vascular tone or perfusion pressure are regulated in normal and pathophysiological conditions.

Keywords

References

  1. Augustin HG, Kozian DH, Johnson RC. Differentiation of endothelial cells: analysis of the constitutive and activated endothelial cell phenotypes. Bioessays. 1994;16:901-906. https://doi.org/10.1002/bies.950161208
  2. Fishman AP. Endothelium: a distributed organ of diverse capabilities. Ann N Y Acad Sci. 1982;401:1-8. https://doi.org/10.1111/j.1749-6632.1982.tb25702.x
  3. Muller MM, Griesmacher A. Markers of endothelial dysfunction. Clin Chem Lab Med. 2000;38:77-85. https://doi.org/10.1515/CCLM.2000.013
  4. Cook-Mills JM, Deem TL. Active participation of endothelial cells in inflammation. J Leukoc Biol. 2005;77:487-495. https://doi.org/10.1189/jlb.0904554
  5. Lum H, Malik AB. Regulation of vascular endothelial barrier function. Am J Physiol. 1994;267(3 Pt 1):L223-L241. https://doi.org/10.1152/ajplung.1994.267.3.L223
  6. Sandoo A, van Zanten JJ, Metsios GS, Carroll D, Kitas GD. The endothelium and its role in regulating vascular tone. Open Cardiovasc Med J. 2010;4:302-312. https://doi.org/10.2174/1874192401004010302
  7. Sullivan MN, Earley S. TRP channel $Ca^{2+}$ sparklets: fundamental signals underlying endothelium-dependent hyperpolarization. Am J Physiol Cell Physiol. 2013;305:C999-C1008. https://doi.org/10.1152/ajpcell.00273.2013
  8. Bredt DS, Snyder SH. Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci U S A. 1990;87:682-685. https://doi.org/10.1073/pnas.87.2.682
  9. Brotherton AF, Hoak JC. Role of $Ca^{2+}$ and cyclic AMP in the regulation of the production of prostacyclin by the vascular endothelium. Proc Natl Acad Sci U S A. 1982;79:495-499. https://doi.org/10.1073/pnas.79.2.495
  10. Garland CJ, Hiley CR, Dora KA. EDHF: spreading the influence of the endothelium. Br J Pharmacol. 2011;164:839-852. https://doi.org/10.1111/j.1476-5381.2010.01148.x
  11. Pires PW, Earley S. No static at all: tuning into the complexities of $Ca^{2+}$ signaling in the endothelium. Circ Res. 2016;118:1042-1044. https://doi.org/10.1161/CIRCRESAHA.116.308519
  12. Tallini YN, Brekke JF, Shui B, Doran R, Hwang SM, Nakai J, Salama G, Segal SS, Kotlikoff MI. Propagated endothelial $Ca^{2+}$ waves and arteriolar dilation in vivo: measurements in Cx40BAC GCaMP2 transgenic mice. Circ Res. 2007;101:1300-1309. https://doi.org/10.1161/CIRCRESAHA.107.149484
  13. Ledoux J, Taylor MS, Bonev AD, Hannah RM, Solodushko V, Shui B, Tallini Y, Kotlikoff MI, Nelson MT. Functional architecture of inositol 1,4,5-trisphosphate signaling in restricted spaces of myoendothelial projections. Proc Natl Acad Sci U S A. 2008;105:9627-9632. https://doi.org/10.1073/pnas.0801963105
  14. Tran CH, Taylor MS, Plane F, Nagaraja S, Tsoukias NM, Solodushko V, Vigmond EJ, Furstenhaupt T, Brigdan M, Welsh DG. Endothelial $Ca^{2+}$ wavelets and the induction of myoendothelial feedback. Am J Physiol Cell Physiol. 2012;302:C1226-C1242. https://doi.org/10.1152/ajpcell.00418.2011
  15. Sonkusare SK, Bonev AD, Ledoux J, Liedtke W, Kotlikoff MI, Heppner TJ, Hill-Eubanks DC, Nelson MT. Elementary $Ca^{2+}$ signals through endothelial TRPV4 channels regulate vascular function. Science. 2012;336:597-601. https://doi.org/10.1126/science.1216283
  16. Bolton TB, Lang RJ, Takewaki T. Mechanisms of action of noradrenaline and carbachol on smooth muscle of guinea-pig anterior mesenteric artery. J Physiol. 1984;351:549-572. https://doi.org/10.1113/jphysiol.1984.sp015262
  17. Chen G, Suzuki H, Weston AH. Acetylcholine releases endothelium-derived hyperpolarizing factor and EDRF from rat blood vessels. Br J Pharmacol. 1988;95:1165-1174. https://doi.org/10.1111/j.1476-5381.1988.tb11752.x
  18. Garland CJ, Dora KA. EDH: endothelium-dependent hyperpolarization and microvascular signalling. Acta Physiol (Oxf). 2017;219:152-161. https://doi.org/10.1111/apha.12649
  19. Garland CJ, McPherson GA. Evidence that nitric oxide does not mediate the hyperpolarization and relaxation to acetylcholine in the rat small mesenteric artery. Br J Pharmacol. 1992;105:429-435. https://doi.org/10.1111/j.1476-5381.1992.tb14270.x
  20. Adeagbo AS, Triggle CR. Varying extracellular [$K^{+}$]: a functional approach to separating EDHF- and EDNO-related mechanisms in perfused rat mesenteric arterial bed. J Cardiovasc Pharmacol. 1993;21:423-429. https://doi.org/10.1097/00005344-199303000-00011
  21. Holzmann S, Kukovetz WR, Windischhofer W, Paschke E, Graier WF. Pharmacologic differentiation between endothelium-dependent relaxations sensitive and resistant to nitro-L-arginine in coronary arteries. J Cardiovasc Pharmacol. 1994;23:747-756. https://doi.org/10.1097/00005344-199405000-00009
  22. Waldron GJ, Garland CJ. Contribution of both nitric oxide and a change in membrane potential to acetylcholine-induced relaxation in the rat small mesenteric artery. Br J Pharmacol. 1994;112:831-836. https://doi.org/10.1111/j.1476-5381.1994.tb13154.x
  23. Edwards G, Dora KA, Gardener MJ, Garland CJ, Weston AH. $K^{+}$ is an endothelium-derived hyperpolarizing factor in rat arteries. Nature. 1998;396:269-272. https://doi.org/10.1038/24388
  24. Kerr PM, Tam R, Ondrusova K, Mittal R, Narang D, Tran CH, Welsh DG, Plane F. Endothelial feedback and the myoendothelial projection. Microcirculation. 2012;19:416-422. https://doi.org/10.1111/j.1549-8719.2012.00187.x
  25. Ledoux J, Werner ME, Brayden JE, Nelson MT. Calcium-activated potassium channels and the regulation of vascular tone. Physiology (Bethesda). 2006;21:69-78. https://doi.org/10.1152/physiol.00040.2005
  26. Luckhoff A, Pohl U, Mulsch A, Busse R. Differential role of extraand intracellular calcium in the release of EDRF and prostacyclin from cultured endothelial cells. Br J Pharmacol. 1988;95:189-196. https://doi.org/10.1111/j.1476-5381.1988.tb16564.x
  27. Pires PW, Sullivan MN, Pritchard HA, Robinson JJ, Earley S. Unitary TRPV3 channel $Ca^{2+}$ influx events elicit endothelium-dependent dilation of cerebral parenchymal arterioles. Am J Physiol Heart Circ Physiol. 2015;309:H2031-H2041. https://doi.org/10.1152/ajpheart.00140.2015
  28. Sullivan MN, Gonzales AL, Pires PW, Bruhl A, Leo MD, Li W, Oulidi A, Boop FA, Feng Y, Jaggar JH, Welsh DG, Earley S. Localized TRPA1 channel $Ca^{2+}$ signals stimulated by reactive oxygen species promote cerebral artery dilation. Sci Signal. 2015;8:ra2. https://doi.org/10.1126/scisignal.2005659
  29. Adamian L, Liang J. Prediction of transmembrane helix orientation in polytopic membrane proteins. BMC Struct Biol. 2006;6:13. https://doi.org/10.1186/1472-6807-6-13
  30. Clapham DE, Runnels LW, Strubing C. The TRP ion channel family. Nat Rev Neurosci. 2001;2:387-396. https://doi.org/10.1038/35077544
  31. Vannier B, Zhu X, Brown D, Birnbaumer L. The membrane topology of human transient receptor potential 3 as inferred from glycosylation-scanning mutagenesis and epitope immunocytochemistry. J Biol Chem. 1998;273:8675-8679. https://doi.org/10.1074/jbc.273.15.8675
  32. Earley S, Brayden JE. Transient receptor potential channels in the vasculature. Physiol Rev. 2015;95:645-690. https://doi.org/10.1152/physrev.00026.2014
  33. Garcia-Sanz N, Fernandez-Carvajal A, Morenilla-Palao C, Planells-Cases R, Fajardo-Sanchez E, Fernandez-Ballester G, Ferrer-Montiel A. Identification of a tetramerization domain in the C terminus of the vanilloid receptor. J Neurosci. 2004;24:5307-5314. https://doi.org/10.1523/JNEUROSCI.0202-04.2004
  34. Rohacs T, Lopes CM, Michailidis I, Logothetis DE. PI(4,5)P2 regulates the activation and desensitization of TRPM8 channels through the TRP domain. Nat Neurosci. 2005;8:626-634. https://doi.org/10.1038/nn1451
  35. Earley S. TRPM4 channels in smooth muscle function. Pflugers Arch. 2013;465:1223-1231. https://doi.org/10.1007/s00424-013-1250-z
  36. Gonzales AL, Yang Y, Sullivan MN, Sanders L, Dabertrand F, Hill-Eubanks DC, Nelson MT, Earley S. A $PLC{\gamma}1$-dependent, forcesensitive signaling network in the myogenic constriction of cerebral arteries. Sci Signal. 2014;7:ra49. https://doi.org/10.1126/scisignal.2004732
  37. Earley S, Gonzales AL, Crnich R. Endothelium-dependent cerebral artery dilation mediated by TRPA1 and $Ca^{2+}$-activated $K^{+}$ channels. Circ Res. 2009;104:987-994. https://doi.org/10.1161/CIRCRESAHA.108.189530
  38. Mendoza SA, Fang J, Gutterman DD, Wilcox DA, Bubolz AH, Li R, Suzuki M, Zhang DX. TRPV4-mediated endothelial $Ca^{2+}$ influx and vasodilation in response to shear stress. Am J Physiol Heart Circ Physiol. 2010;298:H466-H476. https://doi.org/10.1152/ajpheart.00854.2009
  39. Vriens J, Owsianik G, Fisslthaler B, Suzuki M, Janssens A, Voets T, Morisseau C, Hammock BD, Fleming I, Busse R, Nilius B. Modulation of the Ca2 permeable cation channel TRPV4 by cytochrome P450 epoxygenases in vascular endothelium. Circ Res. 2005;97:908-915. https://doi.org/10.1161/01.RES.0000187474.47805.30
  40. Strubing C, Krapivinsky G, Krapivinsky L, Clapham DE. TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron. 2001;29:645-655. https://doi.org/10.1016/S0896-6273(01)00240-9
  41. Strubing C, Krapivinsky G, Krapivinsky L, Clapham DE. Formation of novel TRPC channels by complex subunit interactions in embryonic brain. J Biol Chem. 2003;278:39014-39019. https://doi.org/10.1074/jbc.M306705200
  42. Greenberg HZE, Carlton-Carew SRE, Khan DM, Zargaran AK, Jahan KS, Vanessa Ho WS, Albert AP. Heteromeric TRPV4/TRPC1 channels mediate calcium-sensing receptor-induced nitric oxide production and vasorelaxation in rabbit mesenteric arteries. Vascul Pharmacol. 2017;96-98:53-62. https://doi.org/10.1016/j.vph.2017.08.005
  43. Ma X, Cheng KT, Wong CO, O'Neil RG, Birnbaumer L, Ambudkar IS, Yao X. Heteromeric TRPV4-C1 channels contribute to storeoperated $Ca^{2+}$ entry in vascular endothelial cells. Cell Calcium. 2011;50:502-509. https://doi.org/10.1016/j.ceca.2011.08.006
  44. Qu YY, Wang LM, Zhong H, Liu YM, Tang N, Zhu LP, He F, Hu QH. TRPC1 stimulates calcium-sensing receptor-induced store-operated $Ca^{2+}$ entry and nitric oxide production in endothelial cells. Mol Med Rep. 2017;16:4613-4619. https://doi.org/10.3892/mmr.2017.7164
  45. Albert AP, Pucovsky V, Prestwich SA, Large WA. TRPC3 properties of a native constitutively active $Ca^{2+}$-permeable cation channel in rabbit ear artery myocytes. J Physiol. 2006;571(Pt 2):361-369. https://doi.org/10.1113/jphysiol.2005.102780
  46. Kamouchi M, Philipp S, Flockerzi V, Wissenbach U, Mamin A, Raeymaekers L, Eggermont J, Droogmans G, Nilius B. Properties of heterologously expressed hTRP3 channels in bovine pulmonary artery endothelial cells. J Physiol. 1999;518 Pt 2:345-358. https://doi.org/10.1111/j.1469-7793.1999.0345p.x
  47. Large WA, Saleh SN, Albert AP. Role of phosphoinositol 4,5-bisphosphate and diacylglycerol in regulating native TRPC channel proteins in vascular smooth muscle. Cell Calcium. 2009;45:574-582. https://doi.org/10.1016/j.ceca.2009.02.007
  48. Peppiatt-Wildman CM, Albert AP, Saleh SN, Large WA. Endothelin-1 activates a $Ca^{2+}$-permeable cation channel with TRPC3 and TRPC7 properties in rabbit coronary artery myocytes. J Physiol. 2007;580(Pt3):755-764. https://doi.org/10.1113/jphysiol.2006.126656
  49. Liu CL, Huang Y, Ngai CY, Leung YK, Yao XQ. TRPC3 is involved in flow- and bradykinin-induced vasodilation in rat small mesenteric arteries. Acta Pharmacol Sin. 2006;27:981-990. https://doi.org/10.1111/j.1745-7254.2006.00354.x
  50. Gao G, Bai XY, Xuan C, Liu XC, Jing WB, Novakovic A, Yang Q, He GW. Role of TRPC3 channel in human internal mammary artery. Arch Med Res. 2012;43:431-437. https://doi.org/10.1016/j.arcmed.2012.08.010
  51. Senadheera S, Kim Y, Grayson TH, Toemoe S, Kochukov MY, Abramowitz J, Housley GD, Bertrand RL, Chadha PS, Bertrand PP, Murphy TV, Tare M, Birnbaumer L, Marrelli SP, Sandow SL. Transient receptor potential canonical type 3 channels facilitate endothelium-derived hyperpolarization-mediated resistance artery vasodilator activity. Cardiovasc Res. 2012;95:439-447. https://doi.org/10.1093/cvr/cvs208
  52. Kochukov MY, Balasubramanian A, Abramowitz J, Birnbaumer L, Marrelli SP. Activation of endothelial transient receptor potential C3 channel is required for small conductance calcium-activated potassium channel activation and sustained endothelial hyperpolarization and vasodilation of cerebral artery. J Am Heart Assoc. 2014;3:e000913. https://doi.org/10.1161/JAHA.114.000913
  53. Abdullaev IF, Bisaillon JM, Potier M, Gonzalez JC, Motiani RK, Trebak M. Stim1 and Orai1 mediate CRAC currents and storeoperated calcium entry important for endothelial cell proliferation. Circ Res. 2008;103:1289-1299. https://doi.org/10.1161/01.RES.0000338496.95579.56
  54. Freichel M, Suh SH, Pfeifer A, Schweig U, Trost C, Weissgerber P, Biel M, Philipp S, Freise D, Droogmans G, Hofmann F, Flockerzi V, Nilius B. Lack of an endothelial store-operated $Ca^{2+}$ current impairs agonist-dependent vasorelaxation in $TRP4^{-/-}$ mice. Nat Cell Biol. 2001;3:121-127. https://doi.org/10.1038/35055019
  55. Freichel M, Vennekens R, Olausson J, Hoffmann M, Muller C, Stolz S, Scheunemann J, Weissgerber P, Flockerzi V. Functional role of TRPC proteins in vivo: lessons from TRPC-deficient mouse models. Biochem Biophys Res Commun. 2004;322:1352-1358. https://doi.org/10.1016/j.bbrc.2004.08.041
  56. Shinde AV, Motiani RK, Zhang X, Abdullaev IF, Adam AP, Gonzalez-Cobos JC, Zhang W, Matrougui K, Vincent PA, Trebak M. STIM1 controls endothelial barrier function independently of Orai1 and $Ca^{2+}$ entry. Sci Signal. 2013;6:ra18. https://doi.org/10.1126/scisignal.2003425
  57. Jung S, Muhle A, Schaefer M, Strotmann R, Schultz G, Plant TD. Lanthanides potentiate TRPC5 currents by an action at extracellular sites close to the pore mouth. J Biol Chem. 2003;278:3562-3571. https://doi.org/10.1074/jbc.M211484200
  58. Schaefer M, Plant TD, Obukhov AG, Hofmann T, Gudermann T, Schultz G. Receptor-mediated regulation of the nonselective cation channels TRPC4 and TRPC5. J Biol Chem. 2000;275:17517-17526. https://doi.org/10.1074/jbc.275.23.17517
  59. Amer MS, McKeown L, Tumova S, Liu R, Seymour VA, Wilson LA, Naylor J, Greenhalgh K, Hou B, Majeed Y, Turner P, Sedo A, O'Regan DJ, Li J, Bon RS, Porter KE, Beech DJ. Inhibition of endothelial cell $Ca^{2+}$ entry and transient receptor potential channels by Sigma-1 receptor ligands. Br J Pharmacol. 2013;168:1445-1455. https://doi.org/10.1111/bph.12041
  60. Li Z, Guo G, Wang H, Si X, Zhou G, Xiong Y, Li S, Dai R, Yang C. TRPC5 channel modulates endothelial cells senescence. Eur J Pharmacol. 2017;802:27-35. https://doi.org/10.1016/j.ejphar.2017.02.037
  61. Yip H, Chan WY, Leung PC, Kwan HY, Liu C, Huang Y, Michel V, Yew DT, Yao X. Expression of TRPC homologs in endothelial cells and smooth muscle layers of human arteries. Histochem Cell Biol. 2004;122:553-561. https://doi.org/10.1007/s00418-004-0720-y
  62. Yoshida T, Inoue R, Morii T, Takahashi N, Yamamoto S, Hara Y, Tominaga M, Shimizu S, Sato Y, Mori Y. Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nat Chem Biol. 2006;2:596-607. https://doi.org/10.1038/nchembio821
  63. Togashi K, Hara Y, Tominaga T, Higashi T, Konishi Y, Mori Y, Tominaga M. TRPM2 activation by cyclic ADP-ribose at body temperature is involved in insulin secretion. EMBO J. 2006;25:1804-1815. https://doi.org/10.1038/sj.emboj.7601083
  64. Hara Y, Wakamori M, Ishii M, Maeno E, Nishida M, Yoshida T, Yamada H, Shimizu S, Mori E, Kudoh J, Shimizu N, Kurose H, Okada Y, Imoto K, Mori Y. LTRPC2 $Ca^{2+}$-permeable channel activated by changes in redox status confers susceptibility to cell death. Mol Cell. 2002;9:163-173. https://doi.org/10.1016/S1097-2765(01)00438-5
  65. Kolisek M, Beck A, Fleig A, Penner R. Cyclic ADP-ribose and hydrogen peroxide synergize with ADP-ribose in the activation of TRPM2 channels. Mol Cell. 2005;18:61-69. https://doi.org/10.1016/j.molcel.2005.02.033
  66. Perraud AL, Fleig A, Dunn CA, Bagley LA, Launay P, Schmitz C, Stokes AJ, Zhu Q, Bessman MJ, Penner R, Kinet JP, Scharenberg AM. ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature. 2001;411:595-599. https://doi.org/10.1038/35079100
  67. Chidgey J, Fraser PA, Aaronson PI. Reactive oxygen species facilitate the EDH response in arterioles by potentiating intracellular endothelial $Ca^{2+}$ release. Free Radic Biol Med. 2016;97:274-284. https://doi.org/10.1016/j.freeradbiomed.2016.06.010
  68. Inoue R, Jensen LJ, Shi J, Morita H, Nishida M, Honda A, Ito Y. Transient receptor potential channels in cardiovascular function and disease. Circ Res. 2006;99:119-131. https://doi.org/10.1161/01.RES.0000233356.10630.8a
  69. Yao X, Garland CJ. Recent developments in vascular endothelial cell transient receptor potential channels. Circ Res. 2005;97:853-863. https://doi.org/10.1161/01.RES.0000187473.85419.3e
  70. Baylie RL, Brayden JE. TRPV channels and vascular function. Acta Physiol (Oxf). 2011;203:99-116. https://doi.org/10.1111/j.1748-1716.2010.02217.x
  71. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature. 1997;389:816-824. https://doi.org/10.1038/39807
  72. Poblete IM, Orliac ML, Briones R, Adler-Graschinsky E, Huidobro-Toro JP. Anandamide elicits an acute release of nitric oxide through endothelial TRPV1 receptor activation in the rat arterial mesenteric bed. J Physiol. 2005;568(Pt 2):539-551. https://doi.org/10.1113/jphysiol.2005.094292
  73. Hoi PM, Visintin C, Okuyama M, Gardiner SM, Kaup SS, Bennett T, Baker D, Selwood DL, Hiley CR. Vascular pharmacology of a novel cannabinoid-like compound, 3-(5-dimethylcarbamoyl-pent-1-enyl)-N-(2-hydroxy-1-methyl-ethyl)benzamide (VSN16) in the rat. Br J Pharmacol. 2007;152:751-764. https://doi.org/10.1038/sj.bjp.0707470
  74. Kark T, Bagi Z, Lizanecz E, Pasztor ET, Erdei N, Czikora A, Papp Z, Edes I, Porszasz R, Toth A. Tissue-specific regulation of microvascular diameter: opposite functional roles of neuronal and smooth muscle located vanilloid receptor-1. Mol Pharmacol. 2008;73:1405-1412. https://doi.org/10.1124/mol.107.043323
  75. Yang D, Luo Z, Ma S, Wong WT, Ma L, Zhong J, He H, Zhao Z, Cao T, Yan Z, Liu D, Arendshorst WJ, Huang Y, Tepel M, Zhu Z. Activation of TRPV1 by dietary capsaicin improves endotheliumdependent vasorelaxation and prevents hypertension. Cell Metab. 2010;12:130-141. https://doi.org/10.1016/j.cmet.2010.05.015
  76. Ching LC, Kou YR, Shyue SK, Su KH, Wei J, Cheng LC, Yu YB, Pan CC, Lee TS. Molecular mechanisms of activation of endothelial nitric oxide synthase mediated by transient receptor potential vanilloid type 1. Cardiovasc Res. 2011;91:492-501. https://doi.org/10.1093/cvr/cvr104
  77. Chen L, Kassmann M, Sendeski M, Tsvetkov D, Marko L, Michalick L, Riehle M, Liedtke WB, Kuebler WM, Harteneck C, Tepel M, Patzak A, Gollasch M. Functional transient receptor potential vanilloid 1 and transient receptor potential vanilloid 4 channels along different segments of the renal vasculature. Acta Physiol (Oxf). 2015;213:481-491. https://doi.org/10.1111/apha.12355
  78. Chung MK, Lee H, Mizuno A, Suzuki M, Caterina MJ. 2-aminoethoxydiphenyl borate activates and sensitizes the heat-gated ion channel TRPV3. J Neurosci. 2004;24:5177-5182. https://doi.org/10.1523/JNEUROSCI.0934-04.2004
  79. Xu H, Delling M, Jun JC, Clapham DE. Oregano, thyme and clovederived flavors and skin sensitizers activate specific TRP channels. Nat Neurosci. 2006;9:628-635. https://doi.org/10.1038/nn1692
  80. Earley S, Gonzales AL, Garcia ZI. A dietary agonist of transient receptor potential cation channel V3 elicits endothelium-dependent vasodilation. Mol Pharmacol. 2010;77:612-620. https://doi.org/10.1124/mol.109.060715
  81. Randhawa PK, Jaggi AS. TRPV1 and TRPV4 channels: potential therapeutic targets for ischemic conditioning-induced cardioprotection. Eur J Pharmacol. 2015;746:180-185. https://doi.org/10.1016/j.ejphar.2014.11.010
  82. Strotmann R, Harteneck C, Nunnenmacher K, Schultz G, Plant TD. OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat Cell Biol. 2000;2:695-702. https://doi.org/10.1038/35036318
  83. Watanabe H, Davis JB, Smart D, Jerman JC, Smith GD, Hayes P, Vriens J, Cairns W, Wissenbach U, Prenen J, Flockerzi V, Droogmans G, Benham CD, Nilius B. Activation of TRPV4 channels (hVRL-2/mTRP12) by phorbol derivatives. J Biol Chem. 2002;277:13569- 3577. https://doi.org/10.1074/jbc.M200062200
  84. Thorneloe KS, Sulpizio AC, Lin Z, Figueroa DJ, Clouse AK, Mc-Cafferty GP, Chendrimada TP, Lashinger ES, Gordon E, Evans L, Misajet BA, Demarini DJ, Nation JH, Casillas LN, Marquis RW, Votta BJ, Sheardown SA, Xu X, Brooks DP, Laping NJ, et al. N-((1S)-1-{[4-((2S)-2-{[(2,4-dichlorophenyl)sulfonyl]amino}-3-hydroxypropanoyl)-1-piperazinyl]carbonyl}-3-methylbutyl)-1-benzothiophene-2-carboxamide (GSK1016790A), a novel and potent transient receptor potential vanilloid 4 channel agonist induces urinary bladder contraction and hyperactivity: part I. J Pharmacol Exp Ther. 2008;326:432-442. https://doi.org/10.1124/jpet.108.139295
  85. Vincent F, Acevedo A, Nguyen MT, Dourado M, DeFalco J, Gustafson A, Spiro P, Emerling DE, Kelly MG, Duncton MA. Identification and characterization of novel TRPV4 modulators. Biochem Biophys Res Commun. 2009;389:490-494. https://doi.org/10.1016/j.bbrc.2009.09.007
  86. Watanabe H, Vriens J, Prenen J, Droogmans G, Voets T, Nilius B. Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature. 2003;424:434-438. https://doi.org/10.1038/nature01807
  87. Hartmannsgruber V, Heyken WT, Kacik M, Kaistha A, Grgic I, Harteneck C, Liedtke W, Hoyer J, Kohler R. Arterial response to shear stress critically depends on endothelial TRPV4 expression. PLoS One. 2007;2:e827. https://doi.org/10.1371/journal.pone.0000827
  88. Kohler R, Heyken WT, Heinau P, Schubert R, Si H, Kacik M, Busch C, Grgic I, Maier T, Hoyer J. Evidence for a functional role of endothelial transient receptor potential V4 in shear stress-induced vasodilatation. Arterioscler Thromb Vasc Biol. 2006;26:1495-1502. https://doi.org/10.1161/01.ATV.0000225698.36212.6a
  89. Watanabe H, Vriens J, Suh SH, Benham CD, Droogmans G, Nilius B. Heat-evoked activation of TRPV4 channels in a HEK293 cell expression system and in native mouse aorta endothelial cells. J Biol Chem. 2002;277:47044-47051. https://doi.org/10.1074/jbc.M208277200
  90. Zhang DX, Mendoza SA, Bubolz AH, Mizuno A, Ge ZD, Li R, Warltier DC, Suzuki M, Gutterman DD. Transient receptor potential vanilloid type 4-deficient mice exhibit impaired endotheliumdependent relaxation induced by acetylcholine in vitro and in vivo. Hypertension. 2009;53:532-538. https://doi.org/10.1161/HYPERTENSIONAHA.108.127100
  91. Senadheera S, Bertrand PP, Grayson TH, Leader L, Murphy TV, Sandow SL. Pregnancy-induced remodelling and enhanced endothelium-derived hyperpolarization-type vasodilator activity in rat uterine radial artery: transient receptor potential vanilloid type 4 channels, caveolae and myoendothelial gap junctions. J Anat. 2013;223:677-686. https://doi.org/10.1111/joa.12127
  92. Sullivan MN, Francis M, Pitts NL, Taylor MS, Earley S. Optical recording reveals novel properties of GSK1016790A-induced vanilloid transient receptor potential channel TRPV4 activity in primary human endothelial cells. Mol Pharmacol. 2012;82:464-472. https://doi.org/10.1124/mol.112.078584
  93. Sonkusare SK, Dalsgaard T, Bonev AD, Nelson MT. Inward rectifier potassium (Kir2.1) channels as end-stage boosters of endothelium-dependent vasodilators. J Physiol. 2016;594:3271-3285. https://doi.org/10.1113/JP271652
  94. Sonkusare SK, Dalsgaard T, Bonev AD, Hill-Eubanks DC, Kotlikoff MI, Scott JD, Santana LF, Nelson MT. AKAP150-dependent cooperative TRPV4 channel gating is central to endothelium-dependent vasodilation and is disrupted in hypertension. Sci Signal. 2014;7:ra66. https://doi.org/10.1126/scisignal.2005052
  95. Earley S, Pauyo T, Drapp R, Tavares MJ, Liedtke W, Brayden JE. TRPV4-dependent dilation of peripheral resistance arteries influences arterial pressure. Am J Physiol Heart Circ Physiol. 2009;297:H1096-H1102. https://doi.org/10.1152/ajpheart.00241.2009
  96. Bubolz AH, Mendoza SA, Zheng X, Zinkevich NS, Li R, Gutterman DD, Zhang DX. Activation of endothelial TRPV4 channels mediates flow-induced dilation in human coronary arterioles: role of $Ca^{2+}$ entry and mitochondrial ROS signaling. Am J Physiol Heart Circ Physiol. 2012;302:H634-H642. https://doi.org/10.1152/ajpheart.00717.2011
  97. Bagher P, Beleznai T, Kansui Y, Mitchell R, Garland CJ, Dora KA. Low intravascular pressure activates endothelial cell TRPV4 channels, local $Ca^{2+}$ events, and IKCa channels, reducing arteriolar tone. Proc Natl Acad Sci U S A. 2012;109:18174-18179. https://doi.org/10.1073/pnas.1211946109
  98. Campbell WB, Gebremedhin D, Pratt PF, Harder DR. Identification of epoxyeicosatrienoic acids as endothelium-derived hyperpolarizing factors. Circ Res. 1996;78:415-423. https://doi.org/10.1161/01.RES.78.3.415
  99. Fisslthaler B, Popp R, Kiss L, Potente M, Harder DR, Fleming I, Busse R. Cytochrome P450 2C is an EDHF synthase in coronary arteries. Nature. 1999;401:493-497. https://doi.org/10.1038/46816
  100. Zhao X, Yamamoto T, Newman JW, Kim IH, Watanabe T, Hammock BD, Stewart J, Pollock JS, Pollock DM, Imig JD. Soluble epoxide hydrolase inhibition protects the kidney from hypertensioninduced damage. J Am Soc Nephrol. 2004;15:1244-1253.
  101. Zheng X, Zinkevich NS, Gebremedhin D, Gauthier KM, Nishijima Y, Fang J, Wilcox DA, Campbell WB, Gutterman DD, Zhang DX. Arachidonic acid-induced dilation in human coronary arterioles: convergence of signaling mechanisms on endothelial TRPV4- mediated $Ca^{2+}$ entry. J Am Heart Assoc. 2013;2:e000080. https://doi.org/10.1161/JAHA.113.000080
  102. Willette RN, Bao W, Nerurkar S, Yue TL, Doe CP, Stankus G, Turner GH, Ju H, Thomas H, Fishman CE, Sulpizio A, Behm DJ, Hoffman S, Lin Z, Lozinskaya I, Casillas LN, Lin M, Trout RE, Votta BJ, Thorneloe K, et al. Systemic activation of the transient receptor potential vanilloid subtype 4 channel causes endothelial failure and circulatory collapse: part 2. J Pharmacol Exp Ther. 2008;326:443-452. https://doi.org/10.1124/jpet.107.134551
  103. Suzuki M, Mizuno A, Kodaira K, Imai M. Impaired pressure sensation in mice lacking TRPV4. J Biol Chem. 2003;278:22664-22668. https://doi.org/10.1074/jbc.M302561200
  104. Nishijima Y, Zheng X, Lund H, Suzuki M, Mattson DL, Zhang DX. Characterization of blood pressure and endothelial function in TRPV4-deficient mice with l-NAME- and angiotensin II-induced hypertension. Physiol Rep. 2014;2:e00199. https://doi.org/10.1002/phy2.199
  105. Feletou M, Vanhoutte PM. Endothelium-derived hyperpolarizing factor: where are we now? Arterioscler Thromb Vasc Biol. 2006;26:1215-1225. https://doi.org/10.1161/01.ATV.0000217611.81085.c5
  106. Karashima Y, Prenen J, Talavera K, Janssens A, Voets T, Nilius B. Agonist-induced changes in $Ca^{2+}$ permeation through the nociceptor cation channel TRPA1. Biophys J. 2010;98:773-783. https://doi.org/10.1016/j.bpj.2009.11.007
  107. Nagata K, Duggan A, Kumar G, Garcia-Anoveros J. Nociceptor and hair cell transducer properties of TRPA1, a channel for pain and hearing. J Neurosci. 2005;25:4052-4061. https://doi.org/10.1523/JNEUROSCI.0013-05.2005
  108. Earley S. TRPA1 channels in the vasculature. Br J Pharmacol. 2012;167:13-22. https://doi.org/10.1111/j.1476-5381.2012.02018.x
  109. Cordero-Morales JF, Gracheva EO, Julius D. Cytoplasmic ankyrin repeats of transient receptor potential A1 (TRPA1) dictate sensitivity to thermal and chemical stimuli. Proc Natl Acad Sci U S A. 2011;108:E1184-E1191. https://doi.org/10.1073/pnas.1114124108
  110. Sedgwick SG, Smerdon SJ. The ankyrin repeat: a diversity of interactions on a common structural framework. Trends Biochem Sci. 1999;24:311-316. https://doi.org/10.1016/S0968-0004(99)01426-7
  111. Bandell M, Story GM, Hwang SW, Viswanath V, Eid SR, Petrus MJ, Earley TJ, Patapoutian A. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron. 2004;41:849-857. https://doi.org/10.1016/S0896-6273(04)00150-3
  112. Hinman A, Chuang HH, Bautista DM, Julius D. TRP channel activation by reversible covalent modification. Proc Natl Acad Sci U S A. 2006;103:19564-19568. https://doi.org/10.1073/pnas.0609598103
  113. Macpherson LJ, Dubin AE, Evans MJ, Marr F, Schultz PG, Cravatt BF, Patapoutian A. Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature. 2007;445:541-545. https://doi.org/10.1038/nature05544
  114. Andersson DA, Gentry C, Moss S, Bevan S. Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress. J Neurosci. 2008;28:2485-2494. https://doi.org/10.1523/JNEUROSCI.5369-07.2008
  115. Macpherson LJ, Xiao B, Kwan KY, Petrus MJ, Dubin AE, Hwang S, Cravatt B, Corey DP, Patapoutian A. An ion channel essential for sensing chemical damage. J Neurosci. 2007;27:11412-11415. https://doi.org/10.1523/JNEUROSCI.3600-07.2007
  116. Sawada Y, Hosokawa H, Matsumura K, Kobayashi S. Activation of transient receptor potential ankyrin 1 by hydrogen peroxide. Eur J Neurosci. 2008;27:1131-1142. https://doi.org/10.1111/j.1460-9568.2008.06093.x
  117. Taylor-Clark TE, McAlexander MA, Nassenstein C, Sheardown SA, Wilson S, Thornton J, Carr MJ, Undem BJ. Relative contributions of TRPA1 and TRPV1 channels in the activation of vagal bronchopulmonary C-fibres by the endogenous autacoid 4-oxononenal. J Physiol. 2008;586:3447-3459. https://doi.org/10.1113/jphysiol.2008.153585
  118. Trevisani M, Siemens J, Materazzi S, Bautista DM, Nassini R, Campi B, Imamachi N, Andre E, Patacchini R, Cottrell GS, Gatti R, Basbaum AI, Bunnett NW, Julius D, Geppetti P. 4-Hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1. Proc Natl Acad Sci U S A. 2007;104:13519-13524. https://doi.org/10.1073/pnas.0705923104
  119. Bautista DM, Movahed P, Hinman A, Axelsson HE, Sterner O, Hogestatt ED, Julius D, Jordt SE, Zygmunt PM. Pungent products from garlic activate the sensory ion channel TRPA1. Proc Natl Acad Sci U S A. 2005;102:12248-12252. https://doi.org/10.1073/pnas.0505356102
  120. Kunkler PE, Ballard CJ, Oxford GS, Hurley JH. TRPA1 receptors mediate environmental irritant-induced meningeal vasodilatation. Pain. 2011;152:38-44. https://doi.org/10.1016/j.pain.2010.08.021
  121. Pozsgai G, Bodkin JV, Graepel R, Bevan S, Andersson DA, Brain SD. Evidence for the pathophysiological relevance of TRPA1 receptors in the cardiovascular system in vivo. Cardiovasc Res. 2010;87:760-768. https://doi.org/10.1093/cvr/cvq118
  122. Aubdool AA, Graepel R, Kodji X, Alawi KM, Bodkin JV, Srivastava S, Gentry C, Heads R, Grant AD, Fernandes ES, Bevan S, Brain SD. TRPA1 is essential for the vascular response to environmental cold exposure. Nat Commun. 2014;5:5732. https://doi.org/10.1038/ncomms6732
  123. Babior BM, Kipnes RS, Curnutte JT. Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. J Clin Invest. 1973;52:741-744. https://doi.org/10.1172/JCI107236
  124. Miller AA, Drummond GR, Sobey CG. Reactive oxygen species in the cerebral circulation: are they all bad? Antioxid Redox Signal. 2006;8:1113-1120. https://doi.org/10.1089/ars.2006.8.1113
  125. Uchida K. 4-Hydroxy-2-nonenal: a product and mediator of oxidative stress. Prog Lipid Res. 2003;42:318-343. https://doi.org/10.1016/S0163-7827(03)00014-6
  126. Miller AA, Drummond GR, Schmidt HH, Sobey CG. NADPH oxidase activity and function are profoundly greater in cerebral versus systemic arteries. Circ Res. 2005;97:1055-1062. https://doi.org/10.1161/01.RES.0000189301.10217.87

Cited by

  1. Cross-Talk between Mechanosensitive Ion Channels and Calcium Regulatory Proteins in Cardiovascular Health and Disease vol.22, pp.16, 2020, https://doi.org/10.3390/ijms22168782