DOI QR코드

DOI QR Code

Effects of troxerutin on vascular inflammatory mediators and expression of microRNA-146a/NF-κB signaling pathway in aorta of healthy and diabetic rats

  • Che, Xing (Department of Vascular Surgery, Taizhou People's Hospital) ;
  • Dai, Xiang (Department of Vascular Surgery, Taizhou People's Hospital) ;
  • Li, Caiying (Department of Vascular Surgery, Taizhou People's Hospital)
  • Received : 2020.02.04
  • Accepted : 2020.05.01
  • Published : 2020.09.01

Abstract

This study has investigated the effect of a potent bioflavonoid, troxerutin, on diabetes-induced changes in pro-inflammatory mediators and expression of microRNA-146a and nuclear factor-kappa-B (NF-κB) signaling pathway in aortic tissue of type-I diabetic rats. Male Wistar rats were randomly divided into four groups (n = 6/each): healthy, healthy-troxerutin, diabetic, and diabetic-troxerutin. Diabetes was induced by streptozotocin injection (60 mg/kg; intraperitoneally) and lasted 10 weeks. Troxerutin (150 mg/kg/day) was administered orally for last month of experiment. Inflammatory cytokines IL-1β, IL-6, and TNF-α, as well as intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule (VCAM), cyclooxygenase-II (COX-II), and inducible-nitric oxide synthase (iNOS) were measured on aortic samples by enzyme-linked immunosorbent assay. Gene expressions for transcription factor NF-κB, interleukin-1 receptor-associated kinase-1 (IRAK-1), TNF receptor-associated factor-6 (TRAF-6), and microRNA-146a were determined using real-time polymerase chain reaction. Ten-week diabetes significantly increased mRNA levels of IRAK-1, TRAF-6, NF-κB, and protein levels of cytokines IL-1β, IL-6, TNF-α, adhesion molecules ICAM-1, VCAM, and iNOS, COX-II, and decreased expression of microRNA-146a as compared with healthy rats (p < 0.05 to p < 0.01). However, one month treatment of diabetic rats with troxerutin restored glucose and insulin levels, significantly decreased expression of inflammatory genes and pro-inflammatory mediators and increased microRNA level in comparison to diabetic group (p < 0.05 to p < 0.01). In healthy rats, troxerutin had significant reducing effect only on NF-κB, TNF-α and COX-II levels (p < 0.05). Beside slight improvement of hyperglycemia, troxerutin prevented the activation of NF-κB-dependent inflammatory signaling in the aorta of diabetic rats, and this response may be regulated by microRNA-146a.

Keywords

References

  1. Rask-Madsen C, King GL. Vascular complications of diabetes: mechanisms of injury and protective factors. Cell Metab. 2013;17:20-33. https://doi.org/10.1016/j.cmet.2012.11.012
  2. Nicholls SJ, Tuzcu EM, Kalidindi S, Wolski K, Moon KW, Sipahi I, Schoenhagen P, Nissen SE. Effect of diabetes on progression of coronary atherosclerosis and arterial remodeling: a pooled analysis of 5 intravascular ultrasound trials. J Am Coll Cardiol. 2008;52:255-262. https://doi.org/10.1016/j.jacc.2008.03.051
  3. Shi Y, Vanhoutte PM. Macro- and microvascular endothelial dysfunction in diabetes. J Diabetes. 2017;9:434-449. https://doi.org/10.1111/1753-0407.12521
  4. Yuan T, Yang T, Chen H, Fu D, Hu Y, Wang J, Yuan Q, Yu H, Xu W, Xie X. New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis. Redox Biol. 2019;20:247-260. https://doi.org/10.1016/j.redox.2018.09.025
  5. Kantharidis P, Wang B, Carew RM, Lan HY. Diabetes complications: the microRNA perspective. Diabetes. 2011;60:1832-1837. https://doi.org/10.2337/db11-0082
  6. Feng B, Chen S, McArthur K, Wu Y, Sen S, Ding Q, Feldman RD, Chakrabarti S. miR-146a-mediated extracellular matrix protein production in chronic diabetes complications. Diabetes. 2011;60:2975-2984. https://doi.org/10.2337/db11-0478
  7. Bhatt K, Lanting LL, Jia Y, Yadav S, Reddy MA, Magilnick N, Boldin M, Natarajan R. Anti-inflammatory role of microRNA-146a in the pathogenesis of diabetic nephropathy. J Am Soc Nephrol. 2016;27:2277-2288. https://doi.org/10.1681/ASN.2015010111
  8. Feng Y, Chen L, Luo Q, Wu M, Chen Y, Shi X. Involvement of microRNA-146a in diabetic peripheral neuropathy through the regulation of inflammation. Drug Des Devel Ther. 2018;12:171-177. https://doi.org/10.2147/DDDT.S157109
  9. Lu J, Wu DM, Zheng YL, Hu B, Cheng W, Zhang ZF, Li MQ. Troxerutin counteracts domoic acid-induced memory deficits in mice by inhibiting CCAAT/enhancer binding protein ${\beta}$-mediated inflammatory response and oxidative stress. J Immunol. 2013;190:3466-3479. https://doi.org/10.4049/jimmunol.1202862
  10. Geetha R, Radika MK, Priyadarshini E, Bhavani K, Anuradha CV. Troxerutin reverses fibrotic changes in the myocardium of high-fat high-fructose diet-fed mice. Mol Cell Biochem. 2015;407:263-279. https://doi.org/10.1007/s11010-015-2474-3
  11. Zhang S, Li H, Zhang L, Li J, Wang R, Wang M. Effects of troxerutin on cognitive deficits and glutamate cysteine ligase subunits in the hippocampus of streptozotocin-induced type 1 diabetes mellitus rats. Brain Res. 2017;1657:355-360. https://doi.org/10.1016/j.brainres.2016.12.009
  12. Shu L, Zhang W, Huang G, Huang C, Zhu X, Su G, Xu J. Troxerutin attenuates myocardial cell apoptosis following myocardial ischemiareperfusion injury through inhibition of miR-146a-5p expression. J Cell Physiol. 2019;234:9274-9282. https://doi.org/10.1002/jcp.27607
  13. Zabihi NA, Mousavi SM, Mahmoudabady M, Soukhtanloo M, Sohrabi F, Niazmand S. Teucrium polium L. improves blood glucose and lipids and ameliorates oxidative stress in heart and aorta of diabetic rats. Int J Prev Med. 2018;9:110. https://doi.org/10.4103/ijpvm.ijpvm_189_17
  14. Najafi M, Farajnia S, Mohammadi M, Badalzadeh R, Ahmadi Asl N, Baradaran B, Amani M. Inhibition of mitochondrial permeability transition pore restores the cardioprotection by postconditioning in diabetic hearts. J Diabetes Metab Disord. 2014;13:106. https://doi.org/10.1186/s40200-014-0106-1
  15. Sampath S, Karundevi B. Effect of troxerutin on insulin signaling molecules in the gastrocnemius muscle of high fat and sucrose-induced type-2 diabetic adult male rat. Mol Cell Biochem. 2014;395:11-27. https://doi.org/10.1007/s11010-014-2107-2
  16. Schalkwijk CG, Stehouwer CD. Vascular complications in diabetes mellitus: the role of endothelial dysfunction. Clin Sci (Lond). 2005;109:143-159. https://doi.org/10.1042/CS20050025
  17. Lam TY, Seto SW, Lau YM, Au LS, Kwan YW, Ngai SM, Tsui KW. Impairment of the vascular relaxation and differential expression of caveolin-1 of the aorta of diabetic +db/+db mice. Eur J Pharmacol. 2006;546:134-141. https://doi.org/10.1016/j.ejphar.2006.07.003
  18. Mohammad A, Ali N, Reza B, Ali K. Effect of ascorbic acid supplementation on nitric oxide metabolites and systolic blood pressure in rats exposed to lead. Indian J Pharmacol. 2010;42:78-81. https://doi.org/10.4103/0253-7613.64501
  19. Das Evcimen N, King GL. The role of protein kinase C activation and the vascular complications of diabetes. Pharmacol Res. 2007;55:498-510. https://doi.org/10.1016/j.phrs.2007.04.016
  20. Bullon P, Newman HN, Battino M. Obesity, diabetes mellitus, atherosclerosis and chronic periodontitis: a shared pathology via oxidative stress and mitochondrial dysfunction? Periodontol 2000. 2014;64:139-153. https://doi.org/10.1111/j.1600-0757.2012.00455.x
  21. Kim F, Pham M, Maloney E, Rizzo NO, Morton GJ, Wisse BE, Kirk EA, Chait A, Schwartz MW. Vascular inflammation, insulin resistance, and reduced nitric oxide production precede the onset of peripheral insulin resistance. Arterioscler Thromb Vasc Biol. 2008;28:1982-1988. https://doi.org/10.1161/ATVBAHA.108.169722
  22. Basta G, Schmidt AM, De Caterina R. Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes. Cardiovasc Res. 2004;63:582-592. https://doi.org/10.1016/j.cardiores.2004.05.001
  23. Dasu MR, Devaraj S, Zhao L, Hwang DH, Jialal I. High glucose induces toll-like receptor expression in human monocytes: mechanism of activation. Diabetes. 2008;57:3090-3098. https://doi.org/10.2337/db08-0564
  24. Patel S, Santani D. Role of NF-kappa B in the pathogenesis of diabetes and its associated complications. Pharmacol Rep. 2009;61:595-603. https://doi.org/10.1016/s1734-1140(09)70111-2
  25. Yu Y, Zheng G. Troxerutin protects against diabetic cardiomyopathy through $NF-{\kappa}B$/AKT/IRS1 in a rat model of type 2 diabetes. Mol Med Rep. 2017;15:3473-3478. https://doi.org/10.3892/mmr.2017.6456
  26. Zhang H, Liu J, Qu D, Wang L, Luo JY, Lau CW, Liu P, Gao Z, Tipoe GL, Lee HK, Ng CF, Ma RC, Yao X, Huang Y. Inhibition of miR-200c restores endothelial function in diabetic mice through suppression of COX-2. Diabetes. 2016;65:1196-1207. https://doi.org/10.2337/db15-1067
  27. Yang M, Ye L, Wang B, Gao J, Liu R, Hong J, Wang W, Gu W, Ning G. Decreased miR-146 expression in peripheral blood mononuclear cells is correlated with ongoing islet autoimmunity in type 1 diabetes patients. J Diabetes. 2015;7:158-165. https://doi.org/10.1111/1753-0407.12163
  28. Garcia-Diaz DF, Pizarro C, Camacho-Guillen P, Codner E, Soto N, Perez-Bravo F. Expression of miR-155, miR-146a, and miR-326 in T1D patients from Chile: relationship with autoimmunity and inflammatory markers. Arch Endocrinol Metab. 2018;62:34-40. https://doi.org/10.20945/2359-3997000000006
  29. Feng B, Chen S, Gordon AD, Chakrabarti S. miR-146a mediates inflammatory changes and fibrosis in the heart in diabetes. J Mol Cell Cardiol. 2017;105:70-76. https://doi.org/10.1016/j.yjmcc.2017.03.002
  30. Mann M, Mehta A, Zhao JL, Lee K, Marinov GK, Garcia-Flores Y, Lu LF, Rudensky AY, Baltimore D. An $NF-{\kappa}B$-microRNA regulatory network tunes macrophage inflammatory responses. Nat Commun. 2017;8:851. https://doi.org/10.1038/s41467-017-00972-z
  31. Ye EA, Steinle JJ. miR-146a attenuates inflammatory pathways mediated by $TLR4/NF-{\kappa}B$ and $TNF{\alpha}$ to protect primary human retinal microvascular endothelial cells grown in high glucose. Mediators Inflamm. 2016;2016:3958453.
  32. Huang Y, Liu Y, Li L, Su B, Yang L, Fan W, Yin Q, Chen L, Cui T, Zhang J, Lu Y, Cheng J, Fu P, Liu F. Involvement of inflammationrelated miR-155 and miR-146a in diabetic nephropathy: implications for glomerular endothelial injury. BMC Nephrol. 2014;15:142. https://doi.org/10.1186/1471-2369-15-142

Cited by

  1. Troxerutin attenuates inflammatory response in lipopolysaccharide-induced sepsis in mice vol.135, 2020, https://doi.org/10.1016/j.rvsc.2020.11.020
  2. Targeting inflammation, autophagy, and apoptosis by troxerutin attenuates methotrexate-induced renal injury in rats vol.103, 2020, https://doi.org/10.1016/j.intimp.2021.108284