DOI QR코드

DOI QR Code

Cilostazol ameliorates diabetic nephropathy by inhibiting high-glucose-induced apoptosis

  • Chian, Chien-Wen (Division of Nephrology, Department of Paediatrics, Changhua Christian Hospital) ;
  • Lee, Yung-Shu (Department of Urology, Taipei City Hospital) ;
  • Lee, Yi-Ju (Department of Pathology, Chung Shan Medical University Hospital) ;
  • Chen, Ya-Hui (Department of Medical Research, Changhua Christian Hospital) ;
  • Wang, Chi-Ping (Department of Clinical Biochemistry, Chung Shan Medical University Hospital) ;
  • Lee, Wen-Chin (Division of Nephropathy, Department of Internal Medicine, Chang Bing Show-Chwan Memborial Hospital) ;
  • Lee, Huei-Jane (Department of Clinical Biochemistry, Chung Shan Medical University Hospital)
  • Received : 2020.02.26
  • Accepted : 2020.07.21
  • Published : 2020.09.01

Abstract

Diabetic nephropathy (DN) is a hyperglycemia-induced progressive development of renal insufficiency. Excessive glucose can increase mitochondrial reactive oxygen species (ROS) and induce cell damage, causing mitochondrial dysfunction. Our previous study indicated that cilostazol (CTZ) can reduce ROS levels and decelerate DN progression in streptozotocin (STZ)-induced type 1 diabetes. This study investigated the potential mechanisms of CTZ in rats with DN and in high glucose-treated mesangial cells. Male Sprague-Dawley rats were fed 5 mg/kg/day of CTZ after developing STZ-induced diabetes mellitus. Electron microscopy revealed that CTZ reduced the thickness of the glomerular basement membrane and improved mitochondrial morphology in mesangial cells of diabetic kidney. CTZ treatment reduced excessive kidney mitochondrial DNA copy numbers induced by hyperglycemia and interacted with the intrinsic pathway for regulating cell apoptosis as an antiapoptotic mechanism. In high-glucose-treated mesangial cells, CTZ reduced ROS production, altered the apoptotic status, and down-regulated transforming growth factor beta (TGF-β) and nuclear factor kappa light chain enhancer of activated B cells (NF-κB). Base on the results of our previous and current studies, CTZ deceleration of hyperglycemia-induced DN is attributable to ROS reduction and thereby maintenance of the mitochondrial function and reduction in TGF-β and NF-κB levels.

Keywords

References

  1. Grubb E, Van der Vaart J, Norris K, Smoyer KE, Rolland C. Albuminuria and serum creatinine in predicting renal function decline in patients with diabetic nephropathy: a systematic literature review. Value Health. 2016;19:PA520.
  2. Papadopoulou-Marketou N, Chrousos GP, Kanaka-Gantenbein C. Diabetic nephropathy in type 1 diabetes: a review of early natural history, pathogenesis, and diagnosis. Diabetes Metab Res Rev. 2017;33:e2841. https://doi.org/10.1002/dmrr.2841
  3. Kitada M, Ogura Y, Suzuki T, Sen S, Lee SM, Kanasaki K, Kume S, Koya D. A very-low-protein diet ameliorates advanced diabetic nephropathy through autophagy induction by suppression of the mTORC1 pathway in Wistar fatty rats, an animal model of type 2 diabetes and obesity. Diabetologia. 2016;59:1307-1317. https://doi.org/10.1007/s00125-016-3925-4
  4. Marshall CB. Rethinking glomerular basement membrane thickening in diabetic nephropathy: adaptive or pathogenic? Am J Physiol Renal Physiol. 2016;311:F831-F843. https://doi.org/10.1152/ajprenal.00313.2016
  5. Wang Z, do Carmo JM, Hall JE. ER stress and mitochondrial ROS contribute to the development of hypertensive-diabetic nephropathy. FASEB J. 2016;30 Suppl 1:740.17.
  6. Vokurkova M, Rauchova H, Rezacova L, Vaneckova I, Zicha J. NADPH oxidase activity and reactive oxygen species production in brain and kidney of adult male hypertensive Ren-2 transgenic rats. Physiol Res. 2015;64:849-856.
  7. Jha JC, Thallas-Bonke V, Banal C, Gray SP, Chow BS, Ramm G, Quaggin SE, Cooper ME, Schmidt HH, Jandeleit-Dahm KA. Podocyte-specific Nox4 deletion affords renoprotection in a mouse model of diabetic nephropathy. Diabetologia. 2016;59:379-389. https://doi.org/10.1007/s00125-015-3796-0
  8. Gnudi L, Coward RJM, Long DA. Diabetic nephropathy: perspective on novel molecular mechanisms. Trends Endocrinol Metab. 2016;27:820-830. https://doi.org/10.1016/j.tem.2016.07.002
  9. Lee WC, Chen HC, Wang CY, Lin PY, Ou TT, Chen CC, Wen MC, Wang J, Lee HJ. Cilostazol ameliorates nephropathy in type 1 diabetic rats involving improvement in oxidative stress and regulation of TGF-Beta and NF-kappaB. Biosci Biotechnol Biochem. 2010;74:1355-1361. https://doi.org/10.1271/bbb.90938
  10. Zhai YP, Lu Q, Liu YW, Cheng Q, Wei YQ, Zhang F, Li CL, Yin XX. Over-production of nitric oxide by oxidative stress-induced activation of the TGF-${\beta}1$/PI3K/Akt pathway in mesangial cells cultured in high glucose. Acta Pharmacol Sin. 2013;34:507-514. https://doi.org/10.1038/aps.2012.207
  11. Nishikawa T, Brownlee M, Araki E. Mitochondrial reactive oxygen species in the pathogenesis of early diabetic nephropathy. J Diabetes Investig. 2015;6:137-139. https://doi.org/10.1111/jdi.12258
  12. Mengel-From J, Thinggaard M, Dalgard C, Kyvik KO, Christensen K, Christiansen L. Mitochondrial DNA copy number in peripheral blood cells declines with age and is associated with general health among elderly. Hum Genet. 2014;133:1149-1159. https://doi.org/10.1007/s00439-014-1458-9
  13. Shan Z, Chen S, Sun T, Luo C, Guo Y, Yu X, Yang W, Hu FB, Liu L. U-shaped association between plasma manganese levels and type 2 diabetes. Environ Health Perspect. 2016;124:1876-1881. https://doi.org/10.1289/ehp176
  14. Lee HC, Wei YH. Mitochondrial biogenesis and mitochondrial DNA maintenance of mammalian cells under oxidative stress. Int J Biochem Cell Biol. 2005;37:822-834. https://doi.org/10.1016/j.biocel.2004.09.010
  15. Yoon CY, Park JT, Kee YK, Han SG, Han IM, Kwon YE, Park KS, Lee MJ, Han SH, Kang SW, Yoo TH. Low mitochondrial DNA copy number is associated with adverse clinical outcomes in peritoneal dialysis patients. Medicine (Baltimore). 2016;95:e2717. https://doi.org/10.1097/md.0000000000002717
  16. Al-Kafaji G, Golbahar J. High glucose-induced oxidative stress increases the copy number of mitochondrial DNA in human mesangial cells. Biomed Res Int. 2013;2013:754946.
  17. Jeon YH, Heo YS, Kim CM, Hyun YL, Lee TG, Ro S, Cho JM. Phosphodiesterase: overview of protein structures, potential therapeutic applications and recent progress in drug development. Cell Mol Life Sci. 2005;62:1198-1220. https://doi.org/10.1007/s00018-005-4533-5
  18. Soderling SH, Beavo JA. Regulation of cAMP and cGMP signaling: new phosphodiesterases and new functions. Curr Opin Cell Biol. 2000;12:174-179. https://doi.org/10.1016/S0955-0674(99)00073-3
  19. Cheng J, Grande JP. Cyclic nucleotide phosphodiesterase (PDE) inhibitors: novel therapeutic agents for progressive renal disease. Exp Biol Med (Maywood). 2007;232:38-51.
  20. Cheng J, Thompson MA, Walker HJ, Gray CE, Diaz Encarnacion MM, Warner GM, Grande JP. Differential regulation of mesangial cell mitogenesis by cAMP phosphodiesterase isozymes 3 and 4. Am J Physiol Renal Physiol. 2004;287:F940-F953.
  21. Matsumoto T, Kobayashi T, Wakabayashi K, Kamata K. Cilostazol improves endothelium-derived hyperpolarizing factor-type relaxation in mesenteric arteries from diabetic rats. Am J Physiol Heart Circ Physiol. 2005;289:H1933-H1940. https://doi.org/10.1152/ajpheart.00303.2005
  22. Tsai YC, Kuo PL, Hung WW, Wu LY, Wu PH, Chang WA, Kuo MC, Hsu YL. Angpt2 induces mesangial cell apoptosis through the microRNA-33-5p-SOCS5 loop in diabetic nephropathy. Mol Ther Nucleic Acids. 2018;13:543-555. https://doi.org/10.1016/j.omtn.2018.10.003
  23. Chae YM, Park KK, Magae J, Lee IS, Kim CH, Kim HC, Hong S, Lee JG, Choi IJ, Kim HS, Min KS, Lee IK, Chang YC. Sp1-decoy oligodeoxynucleotide inhibits high glucose-induced mesangial cell proliferation. Biochem Biophys Res Commun. 2004;319:550-555. https://doi.org/10.1016/j.bbrc.2004.05.025
  24. Wolf G, Ziyadeh FN. Molecular mechanisms of diabetic renal hypertrophy. Kidney Int. 1999;56:393-405. https://doi.org/10.1046/j.1523-1755.1999.00590.x
  25. Young BA, Johnson RJ, Alpers CE, Eng E, Gordon K, Floege J, Couser WG, Seidel K. Cellular events in the evolution of experimental diabetic nephropathy. Kidney Int. 1995;47:935-944. https://doi.org/10.1038/ki.1995.139
  26. Rahman MH, Jha MK, Suk K. Evolving insights into the pathophysiology of diabetic neuropathy: implications of malfunctioning glia and discovery of novel therapeutic targets. Curr Pharm Des. 2016;22:738-757. https://doi.org/10.2174/1381612822666151204001234
  27. Zhao JH. Mesangial cells and renal fibrosis. Adv Exp Med Biol. 2019;1165:165-194. https://doi.org/10.1007/978-981-13-8871-2_9
  28. Sun Z, Ma Y, Chen F, Wang S, Chen B, Shi J. Artesunate ameliorates high glucose-induced rat glomerular mesangial cell injury by suppressing the TLR4/$NF-{\kappa}B$/NLRP3 inflammasome pathway. Chem Biol Interact. 2018;293:11-19. https://doi.org/10.1016/j.cbi.2018.07.011
  29. Yao L, Li J, Li L, Li X, Zhang R, Zhang Y, Mao X. Coreopsis tinctoria Nutt ameliorates high glucose-induced renal fibrosis and inflammation via the $TGF-{\beta}1$/SMADS/AMPK/$NF-{\kappa}B$ pathways. BMC Complement Altern Med. 2019;19:14. https://doi.org/10.1186/s12906-018-2410-7
  30. Su SC, Hung YJ, Huang CL, Shieh YS, Chien CY, Chiang CF, Liu JS, Lu CH, Hsieh CH, Lin CM, Lee CH. Cilostazol inhibits hyperglucose-induced vascular smooth muscle cell dysfunction by modulating the RAGE/ERK/$NF-{\kappa}B$ signaling pathways. J Biomed Sci. 2019;26:68. https://doi.org/10.1186/s12929-019-0550-9
  31. Aghadavod E, Khodadadi S, Baradaran A, Nasri P, Bahmani M, Rafieian-Kopaei M. Role of oxidative stress and inflammatory factors in diabetic kidney disease. Iran J Kidney Dis. 2016;10:337-343.
  32. Rani V, Deep G, Singh RK, Palle K, Yadav UC. Oxidative stress and metabolic disorders: pathogenesis and therapeutic strategies. Life Sci. 2016;148:183-193. https://doi.org/10.1016/j.lfs.2016.02.002
  33. de Cavanagh EM, Toblli JE, Ferder L, Piotrkowski B, Stella I, Inserra F. Renal mitochondrial dysfunction in spontaneously hypertensive rats is attenuated by losartan but not by amlodipine. Am J Physiol Regul Integr Comp Physiol. 2006;290:R1616-R1625. https://doi.org/10.1152/ajpregu.00615.2005
  34. Domingueti CP, Dusse LM, Carvalho M, de Sousa LP, Gomes KB, Fernandes AP. Diabetes mellitus: the linkage between oxidative stress, inflammation, hypercoagulability and vascular complications. J Diabetes Complications. 2016;30:738-745. https://doi.org/10.1016/j.jdiacomp.2015.12.018
  35. Sesaki H, Jensen RE. Division versus fusion: Dnm1p and Fzo1p antagonistically regulate mitochondrial shape. J Cell Biol. 1999;147:699-706. https://doi.org/10.1083/jcb.147.4.699
  36. Chen H, Chan DC. Emerging functions of mammalian mitochondrial fusion and fission. Hum Mol Genet. 2005;14 Spec No. 2:R283-R289. https://doi.org/10.1093/hmg/ddi270
  37. Yoon Y. Sharpening the scissors: mitochondrial fission with aid. Cell Biochem Biophys. 2004;41:193-206. https://doi.org/10.1385/CBB:41:2:193
  38. Yoon Y. Regulation of mitochondrial dynamics: another process modulated by $Ca^{2+}$ signals? Sci STKE. 2005;2005:pe18.
  39. Riva A, Tandler B, Loffredo F, Vazquez E, Hoppel C. Structural differences in two biochemically defined populations of cardiac mitochondria. Am J Physiol Heart Circ Physiol. 2005;289:H868-H872. https://doi.org/10.1152/ajpheart.00866.2004
  40. Skulachev VP. Mitochondrial filaments and clusters as intracellular power-transmitting cables. Trends Biochem Sci. 2001;26:23-29. https://doi.org/10.1016/S0968-0004(00)01735-7
  41. Westermann B. Merging mitochondria matters: cellular role and molecular machinery of mitochondrial fusion. EMBO Rep. 2002;3:527-531. https://doi.org/10.1093/embo-reports/kvf113
  42. Vanhorebeek I, De Vos R, Mesotten D, Wouters PJ, De Wolf-Peeters C, Van den Berghe G. Protection of hepatocyte mitochondrial ultrastructure and function by strict blood glucose control with insulin in critically ill patients. Lancet. 2005;365:53-59. https://doi.org/10.1016/S0140-6736(04)17665-4
  43. Kelley DE, He J, Menshikova EV, Ritov VB. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes. 2002;51:2944-2950. https://doi.org/10.2337/diabetes.51.10.2944
  44. Senefeld J, Hunter SK. Molecular underpinnings of diabetic polyneuropathy. J Appl Physiol. 2016;121:360. https://doi.org/10.1152/japplphysiol.00380.2016
  45. Thanabalasingham G, Owen KR. Diagnosis and management of maturity onset diabetes of the young (MODY). BMJ. 2011;343:d6044. https://doi.org/10.1136/bmj.d6044
  46. Gutierrez G, Mendoza C, Montano LF, Lopez-Marure R. Ceramide induces early and late apoptosis in human papilloma virus+ cervical cancer cells by inhibiting reactive oxygen species decay, diminishing the intracellular concentration of glutathione and increasing nuclear factor-kappaB translocation. Anticancer Drugs. 2007;18:149-159. https://doi.org/10.1097/CAD.0b013e3280115111
  47. Larsen NB, Rasmussen M, Rasmussen LJ. Nuclear and mitochondrial DNA repair: similar pathways? Mitochondrion. 2005;5:89-108. https://doi.org/10.1016/j.mito.2005.02.002
  48. Kim MM, Clinger JD, Masayesva BG, Ha PK, Zahurak ML, Westra WH, Califano JA. Mitochondrial DNA quantity increases with histopathologic grade in premalignant and malignant head and neck lesions. Clin Cancer Res. 2004;10:8512-8515. https://doi.org/10.1158/1078-0432.CCR-04-0734
  49. Kang BP, Frencher S, Reddy V, Kessler A, Malhotra A, Meggs LG. High glucose promotes mesangial cell apoptosis by oxidant-dependent mechanism. Am J Physiol Renal Physiol. 2003;284:F455-F466. https://doi.org/10.1152/ajprenal.00137.2002
  50. Wu Y, Qian Z, Fu S, Yue Y, Li Y, Sun R, Huang B, Yang D. IcarisideII improves left ventricular remodeling in spontaneously hypertensive rats by inhibiting the ASK1-JNK/p38 signaling pathway. Eur J Pharmacol. 2018;819:68-79. https://doi.org/10.1016/j.ejphar.2017.11.035

Cited by

  1. CT and MRI Imaging Characteristics of Gastrointestinal and Mesangial Reactive Nodular Fibrous Pseudotumor Based on Virtual Reality vol.2021, 2020, https://doi.org/10.1155/2021/7054434
  2. Recent research progress on the role of ulinastatin in chronic kidney disease vol.26, pp.9, 2020, https://doi.org/10.1111/nep.13906
  3. Huangkui capsule in combination with metformin ameliorates diabetic nephropathy via the Klotho/TGF-β1/p38MAPK signaling pathway vol.281, 2020, https://doi.org/10.1016/j.jep.2020.113548