DOI QR코드

DOI QR Code

The bounds for fully saturated porous material

  • Received : 2020.10.03
  • Accepted : 2020.10.23
  • Published : 2020.10.30

Abstract

The elasticity tensor for water may be employed to model the fully saturated porous material. Mostly water is assumed to be incompressible with a bulk modulus, however, the upper and lower bounds of off-diagonal components of the elasticity tensor of porous materials filled with water are violated when the bulk modulus is relatively high. In many cases, the generalized Hill inequality describes the general bounds of Voigt and Reuss for eigenvalues, but the bounds for the component of elasticity tensor are more realistic because the principal axis of eigenvalues of two phases, matrix and water, are not coincident. Thus in this paper, for anisotropic material containing pores filled with water, the bounds for the component of elasticity tensor are expressed by the rule of mixture and the upper and lower bounds of fully saturated porous materials are violated for low porosity and high bulk modulus of water.

Keywords

References

  1. W. Voigt, Lehrbuch der Krisallphysik, Teubner, Leipzig, 1928.
  2. A. Reuss, Berechnung der Fliessgrenze von Mischkristallen auf Grund der Plastizitatsbedingung fur Einkristalle. ZAMM 9: 49-58, 1929. https://doi.org/10.1002/zamm.19290090104
  3. R. Hill, The elastic behavior of crystalline aggregate, Proc. Phys. Soc A. 65: 349-354, 1952. https://doi.org/10.1088/0370-1298/65/5/307
  4. R. Hill, Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids. 11, 357-372, 1963. https://doi.org/10.1016/0022-5096(63)90036-X
  5. S. C. Cowin, G. Yang, Averaging anisotropic elastic constant data. J. Elasticity. 46, 151-180, 1997. https://doi.org/10.1023/A:1007335407097
  6. S. C. Cowin, G. Yang, and M. M. Mehrabadi, Bounds on the effective anisotropic elastic constants. J. Elasticity. 57, 1-24, 1999. https://doi.org/10.1023/A:1007669330552
  7. Y. J. Yoon, G. Yang, , S. C. Cowin, Estimation of the effective transversely isotropic elastic constants of a material from known values of the material's orthotropic elastic constants. Biomech. Model. Mechanobiol 1, 83-93, 2002. https://doi.org/10.1007/s10237-002-0008-x
  8. S. C. Cowin, M. M. Mehrabadi, On the structure of the linear anisotropic elastic symmetries. J. Mech. Phys. Solids 40, 1459-1472, 1992. https://doi.org/10.1016/0022-5096(92)90029-2
  9. S. C. Cowin, M. M. Mehrabadi, Anisotropic symmetries of linear elasticity. Appl. Mech. Rev. 48, 247-285, 1995. https://doi.org/10.1115/1.3005102
  10. Y. J. Yoon, S. C. Cowin, The estimated elastic constants for a single bone osteonal lamella. Biomech. Model. Mechanobiol. 7, 1-11, 2008. https://doi.org/10.1007/s10237-006-0072-8
  11. Y. J. Yoon, S. C. Cowin, The elastic moduli estimation of the solid-water mixture. Int. J. Solids Struct. 46, 527-533, 2009. https://doi.org/10.1016/j.ijsolstr.2008.09.010