DOI QR코드

DOI QR Code

Lightweight Model for Energy Storage System Remaining Useful Lifetime Estimation

ESS 잔존수명 추정 모델 경량화 연구

  • Yu, Jung-Un (Department of Electrical Engineering, Gachon University) ;
  • Park, Sung-Won (Department of Electronic and Electrical Engineering, Youngsan University) ;
  • Son, Sung-Yong (Department of Electrical Engineering, Gachon University)
  • Received : 2020.10.06
  • Accepted : 2020.10.23
  • Published : 2020.10.30

Abstract

ESS(energy storage system) has recently become an important power source in various areas due to increased renewable energy resources. The more ESS is used, the less the effective capacity of the ESS. Therefore, it is important to manage the remaining useful lifetime(RUL). RUL can be checked regularly by inspectors, but it is common to be monitored and estimated by an automated monitoring system. The accurate state estimation is important to ESS operator for economical and efficient operation. RUL estimation model usually requires complex mathematical calculations consisting of cycle aging and calendar aging that are caused by the operation frequency and over time, respectively. A lightweight RUL estimation model is required to be embedded in low-performance processors that are installed on ESS. In this paper, a lightweight ESS RUL estimation model is proposed to operate on low-performance micro-processors. The simulation results show less than 1% errors compared to the original RUL model case. In addition, a performance analysis is conducted based on ATmega 328. The results show 76.8 to 78.3 % of computational time reduction.

ESS(energy storage system)는 재생에너지 자원의 증가 등의 영향에 따라 최근 다양한 분야에서 중요한 전력원으로 자리 잡고 있다. ESS는 사용에 따라 가용 용량이 지속적으로 감소하므로 잔존수명을 관리하는 것이 중요하다. 잔존수명의 추정을 위하여 주기적으로 점검자가 확인하는 방식이 사용될 수도 있으나, 관리시스템을 통하여 자동으로 모니터링되고 관리되는 것이 일반적이다. ESS 사업자 관점에서 정확도 높은 상태추정은 경제적, 효율적 운용을 위하여 중요하다. 잔존수명추정 모델은 운영에 따른 사이클 노후화와 기간 경과에 따른 캘린더 노후화를 고려하여 구성되며 복잡한 수학적 연산을 필요로 한다. ESS에 탑재되는 저비용 저성능의 프로세서에 잔존수명 추정모델의 적용을 위해서는 모델의 적절한 경량화 방안이 요구된다. 본 논문에서는 낮은 수준의 프로세서에서 연산이 용이하도록 ESS 잔존수명예측 모델을 경량화하였다. 시뮬레이션 평가 결과 ESS 잔존수명 추정 기준모델과 제안하는 모델간 오차는 1% 이내로 나타났다. 또한, 제안된 모델의 성능개선 효과 검증을 위하여 ATmega328을 기반으로 비교 평가를 수행하였을 때, 76.8~78.3%의 컴퓨팅 시간 단축을 확인하였다.

Keywords

References

  1. Seak Bai Koh and Sung-Yong Son, "A Review of Transaction-Based Energy Management Technology for Energy Prosumers," The Journal of Korea Institute of Information, Electronics, and Communication Technology, Vol. 11, No.1, pp.45-53, Feb, 2018. https://doi.org/10.17661/jkiiect.2018.11.1.45
  2. B. Pinnangudi, M. Kuykendal, and S. Bhadra, "4 - Smart Grid Energy Storage," The Power Grid, pp.93-135, 2017.
  3. SNE research center, "Global ESS Market Forecast (2017-2030)," SNE research, pp 81, May, 2019.
  4. S.H. Sim, J.H. Gang, Dawn An, S.I. Kim, Jin. Y. Kim and J.H. Choi, "Remaining Useful Life Prediction of Li-Ion Battery Based on Charge Voltage Characteristics," Trans. Korean Soc. Mech, Vol.37, No.4, pp.313-322, January, 2013.
  5. W.R. Kim and Y.S. Kim, "A Study on RFID Code Structure for Traceability System of Electric Vehicle Batteries," KITS, pp.95-104, February, 2012.
  6. Anthony Barre, Benjamin Deguilhem, Sebastien Grolleau, Mathias Gerard, Frederic Suarda and Delphine Riu, "A review on lithium-ion battery ageing mechanisms and estimations for automotive applications," Journal of Power Sources Volume 241, pp.680-689, November, 2013. https://doi.org/10.1016/j.jpowsour.2013.05.040
  7. Brandon Foggo, Nanpeng Yu, "Improved Battery Storage Valuation Through Degradation Reduction," IEEE Transactions on SmartGrid Vol.9, Issue 6, pp.5721-5732, November, 2018.
  8. X. Han, M. Ouyang, L. Lu and J. Li, "A comparative study of commercial lithium ion battery cycle life in electric vehicle: Capacity loss estimation," Journal of Power Sources Volume 268, pp.658-669, December, 2014. https://doi.org/10.1016/j.jpowsour.2014.06.111
  9. D. Zhang, S. Dey and HE. Perez, "Remaining Useful Life Estimation of Lithium-Ion Batteries based on Thermal Dynamics," 2017 American Control Conference(ACC), pp.24-26, May, 2017.