DOI QR코드

DOI QR Code

WEIGHTED PROJECTIVE LINES WITH WEIGHT PERMUTATION

  • Han, Lina (Yau Mathematical Sciences Center Tsinghua University) ;
  • Wang, Xintian (College of Science China University of Mining and Technology (Beijing))
  • Received : 2020.01.28
  • Accepted : 2020.08.31
  • Published : 2021.01.01

Abstract

Let �� be a weighted projective line defined over the algebraic closure $k={\bar{\mathbb{F}}}_q$ of the finite field ��q and σ be a weight permutation of ��. By folding the category coh-�� of coherent sheaves on �� in terms of the Frobenius twist functor induced by σ, we obtain an ��q-category, denoted by coh-(��, σ; q). We then prove that coh-(��, σ; q) is derived equivalent to the valued canonical algebra associated with (��, σ).

Keywords

Acknowledgement

The authors are very grateful to Professor Bangming Deng for his encouragement and careful guidance, and to Chenyang Ma for many useful discussions. We also thank the referee for helpful comments.

References

  1. X.-W. Chen, Z. Han, and Y. Zhou, Derived equivalences via HRS-tilting, Adv. Math. 354 (2019), 106749. 26 pp. https://doi.org/10.1016/j.aim.2019.106749
  2. X.-W. Chen and H. Krause, Introduction to coherent sheaves over weighted projective lines, arXiv: 0911.4473.
  3. Z. Chen and Y. Lin, A realization of elliptic Lie algebras of type F(2,2)4 by the Ringel-Hall approach, J. Algebra 350 (2012), 108-131. https://doi.org/10.1016/j.jalgebra.2011.10.008
  4. X.-W. Chen and C. M. Ringel, Hereditary triangulated categories, J. Noncommut. Geom. 12 (2018), no. 4, 1425-1444. https://doi.org/10.4171/JNCG/311
  5. B. Deng and J. Du, Frobenius morphisms and representations of algebras, Trans. Amer. Math. Soc. 358 (2006), no. 8, 3591-3622. https://doi.org/10.1090/S0002-9947-06-03812-8
  6. B. Deng and J. Du, Folding derived categories with Frobenius functors, J. Pure Appl. Algebra 208 (2007), no. 3, 1023-1050. https://doi.org/10.1016/j.jpaa.2006.05.001
  7. B. Deng, J. Du, B. Parshall, and J. Wang, Finite dimensional algebras and quantum groups, Mathematical Surveys and Monographs, 150, American Mathematical Society, Providence, RI, 2008. https://doi.org/10.1090/surv/150
  8. A. D. Elagin, On equivariant triangulated categories, arXiv:1403.7027v2, 2015.
  9. W. Geigle and H. Lenzing, A class of weighted projective curves arising in representation theory of finite-dimensional algebras, in Singularities, representation of algebras, and vector bundles (Lambrecht, 1985), 265-297, Lecture Notes in Math., 1273, Springer, Berlin, 2006. https://doi.org/10.1007/BFb0078849
  10. D. Happel, I. Reiten, and S. O. Smalo, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 120 (1996), no. 575, viii+ 88 pp. https://doi.org/10.1090/memo/0575
  11. D. Happel and C. M. Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274 (1982), no. 2, 399-443. https://doi.org/10.2307/1999116
  12. B. Keller and D. Vossieck, Sous les categories derivees, C. R. Acad. Sci. Paris Ser. I Math. 305 (1987), no. 6, 225-228.
  13. I. Reiten and M. Van den Bergh, Noetherian hereditary abelian categories satisfying Serre duality, J. Amer. Math. Soc. 15 (2002), no. 2, 295-366. https://doi.org/10.1090/S0894-0347-02-00387-9
  14. C. M. Ringel, The canonical algebras, in Topics in algebra, Part 1 (Warsaw, 1988), 407-432, Banach Center Publ., 26, Part 1, PWN, Warsaw, 1990.
  15. J.-P. Serre, Faisceaux algebriques coherents, Ann. of Math. (2) 61 (1955), 197-278. https://doi.org/10.2307/1969915