Semi-analytical Numerical Analysis of the Core-size and Electric-field Intensity Dependency of the Light Emission Wavelength of CdSe/ZnS Quantum Dots

  • Lee, Honyeon (Department of Electronics & Information Engineering, Soonchunhyang University)
  • 투고 : 2021.08.08
  • 심사 : 2021.09.16
  • 발행 : 2021.09.30

초록

I performed a semi-analytical numerical analysis of the effects of core size and electric field intensity on the light emission wavelength of CdSe/ZnS quantum dots (QDs). The analysis used a quantum mechanical approach; I solved the Schrödinger equation describing the electron-hole pairs of QDs. The numerical solutions are described using a basis set composed of the eigenstates of the Schrödinger equation; they are thus equivalent to analytical solutions. This semi-analytical numerical method made it simple and reliable to evaluate the dependency of QD characteristics on the QD core size and electric field intensity. As the QD core diameter changed from 9.9 to 2.5 nm, the light emission wavelength of CdSe core-only QDs varied from 262.9 to 643.8 nm, and that of CdSe/ZnS core/shell QDs from 279.9 to 697.2 nm. On application of an electric field of 8 × 105 V/cm, the emission wavelengths of green-emitting CdSe and CdSe/ZnS QDs increased by 7.7 and 3.8 nm, respectively. This semi-analytical numerical analysis will aid the choice of QD size and material, and promote the development of improved QD light-emitting devices.

키워드

과제정보

This work was funded by BK21 FOUR (Fostering Outstanding Universities for Research) (No.: 5199991614564) and by the Soonchunhyang University Research Fund.

참고문헌

  1. P.O. Anikeeva, J.E. Halpert, M.G. Bawendi, V. Bulovic, "Quantum Dot Light-Emitting Devices with Electroluminescence Tunable over the Entire Visible Spectrum", Nano Lett., Vol. 9, pp. 2532-2536, 2009. https://doi.org/10.1021/nl9002969
  2. S.-J. Zou, Y. Shen, F.-M. Xie, J.-D. Chen, Y.-Q. Li, J.-X. Tang, "Recent advances in organic light-emitting diodes: toward smart lighting and displays", Mater. Chem. Front., Vol. 4. pp. 788-820, 2020. https://doi.org/10.1039/c9qm00716d
  3. H.-W. Chen, J.-H. Lee, B.-Y. Lin, S. Chen, S.-T. Wu, "Liquid crystal display and organic light-emitting diode display: present status and future perspectives", Light Sci. Appl., Vol. 7, 17168, 2018. https://doi.org/10.1038/lsa.2017.168
  4. E. Lee, C.K. Wang, C. Hotz, J. Hartlove, J. Yurek, H. Daniels, Z. Luo, and D. Zehnder, ""Greener" Quantum-Dot Enabled LCDs with BT.2020 Color Gamut", in: SID Symp. Dig. Tech. Pap., Wiley, pp. 549-551, 2016
  5. J. Chen, V. Hardev, and J. Yurek, "Quantum-Dot Displays: Giving LCDs a Competitive Edge through Color", Inf. Disp., Vol. 29, pp. 12-17, 2013.
  6. Y. Shirasaki, G.J. Supran, M.G. Bawendi, and V. Bulovic, "Emergence of colloidal quantum-dot light-emitting technologies", Nat. Photonics, Vol. 7, pp. 13-23, 2013. https://doi.org/10.1038/nphoton.2012.328
  7. M.K. Choi, J. Yang, T. Hyeon, and D.-H. Kim, "Flexible quantum dot light-emitting diodes for next-generation displays", Npj Flex. Electron., Vol. 2, 10, 2018.
  8. W. Mei, Z. Zhang, A. Zhang, D. Li, X. Zhang, H. Wang, Z. Chen, Y. Li, X. Li, and X. Xu, "High-resolution, full-color quantum dot light-emitting diode display fabricated via photolithography approach", Nano Res., Vol. 13, pp. 2485-2491, 2020. https://doi.org/10.1007/s12274-020-2883-9
  9. X. Dai, Y. Deng, X. Peng, and Y. Jin, "Quantum-Dot Light-Emitting Diodes for Large-Area Displays: Towards the Dawn of Commercialization", Adv. Mater., Vol. 29, 1607022, 2017. https://doi.org/10.1002/adma.201607022
  10. Q. Yuan, T. Wang, P. Yu, H. Zhang, H. Zhang, W. Ji, "A review on the electroluminescence properties of quantum-dot light-emitting diodes", Org. Electron., Vol. 90, 106086, 2021. https://doi.org/10.1016/j.orgel.2021.106086
  11. H. Moon, C. Lee, W. Lee, J. Kim, and H. Chae, "Stability of Quantum Dots, Quantum Dot Films, and Quantum Dot Light-Emitting Diodes for Display Applications", Adv. Mater., Vol. 31, 1804294, 2019. https://doi.org/10.1002/adma.201804294
  12. S.C. Hsu, L.A. Ke, H.C. Lin, T.M. Chen, H.Y. Lin, Y.Z. Chen, Y.L. Chueh, H.C. Kuo, C.C. Lin, "Fabrication of a Highly Stable White Light-Emitting Diode with Multiple-Layer Colloidal Quantum Dots", IEEE J. Sel. Top. Quantum Electron., Vol. 23, 2000409, 2017.
  13. Y. Sun, Y. Jiang, X.W. Sun, S. Zhang, and S. Chen, "Beyond OLED: Efficient Quantum Dot Light-Emitting Diodes for Display and Lighting Application", Chem. Rec., Vol. 19, pp. 1729-1752, 2019. https://doi.org/10.1002/tcr.201800191
  14. M. Lu, J. Guo, S. Sun, P. Lu, X. Zhang, Z. Shi, W.W. Yu, Y. Zhang, "Surface ligand engineering-assisted CsPbI3 quantum dots enable bright and efficient red light-emitting diodes with a top-emitting structure", Chem. Eng. J., Vol. 404, 126563, 2021. https://doi.org/10.1016/j.cej.2020.126563
  15. X. Han, G. Zhang, B. Li, C. Yang, W. Guo, X. Bai, P. Huang, R. Chen, C. Qin, J. Hu, Y. Ma, H. Zhong, L. Xiao, and S. Jia, "Blinking Mechanisms and Intrinsic Quantum-Confined Stark Effect in Single Methylammonium Lead Bromide Perovskite Quantum Dots", Small, Vol. 16, 2005435, 2020. https://doi.org/10.1002/smll.202005435
  16. L. Zhang, B. Lv, H. Yang, R. Xu, X. Wang, M. Xiao, Y. Cui, and J. Zhang, "Quantum-confined stark effect in the ensemble of phase-pure CdSe/CdS quantum dots", Nanoscale, Vol. 11, pp. 12619-12625, 2019. https://doi.org/10.1039/c9nr03061a
  17. Z.B. Wang, J.Y. Zhang, Y.P. Cui, and Y.H. Ye, "Effect of electrical field on colloidal CdSe/ZnS quantum dots", Chinese Phys. Lett., Vol. 25, pp. 4435-4438, 2008. https://doi.org/10.1088/0256-307X/25/12/070
  18. T.E. Simos, and P.S. Williams, "A finite-difference method for the numerical solution of the Schrodinger equation", J. Comput. Appl. Math., Vol. 79, pp. 189-205, 1997. https://doi.org/10.1016/S0377-0427(96)00156-2
  19. N. Sato, and S. Iwata, "Application of finite-element method to the two-dimensional Schrodinger equation", J. Comput. Chem., Vol. 9, pp. 222-231, 1988. https://doi.org/10.1002/jcc.540090306
  20. R. Schmied, Using Mathematica for Quantum Mechanics, 1st ed., Springer Singapore, Singapore, 2020.
  21. I. Wolfram Research, Mathematica, (2016). https://www.wolfram.com/mathematica/.
  22. B.O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J.R. Heine, H. Mattoussi, R. Ober, K.F. Jensen, and M.G. Bawendi, "(CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites", J. Phys. Chem. B., Vol. 101, pp. 9463-9475, 1997. https://doi.org/10.1021/jp971091y
  23. D.J. Kim, and H.N. Lee, "Improving the charge balance and performance of CdSe/ZnS quantum-dot light-emitting diodes with a sputtered zinc-tin-oxide electron-transport layer and a thermally evaporated tungsten-oxide charge-restricting layer", Jpn. J. Appl. Phys., Vol. 58, 106502, 2019. https://doi.org/10.7567/1347-4065/ab3c77
  24. A. Samanta, Z. Deng, and Y. Liu, "Aqueous synthesis of glutathione-capped CdTe/CdS/ZnS and CdTe/CdSe/ZnScore/shell/shell nanocrystal heterostructures", Langmuir, Vol. 28, pp. 8205-8215, 2012. https://doi.org/10.1021/la300515a
  25. E.J. Tyrrell, and J.M. Smith, "Effective mass modeling of excitons in type-II quantum dot heterostructures", Phys. Rev. B - Condens. Matter Mater. Phys., Vol. 84, 165238, 2011.
  26. S. Baskoutas, and A.F. Terzis, "Size-dependent band gap of colloidal quantum dots", J. Appl. Phys., Vol. 99, 013708, 2006. https://doi.org/10.1063/1.2158502
  27. E.O. Chukwuocha, M.C. Onyeaju, and T.S.T. Harry, "Theoretical Studies on the Effect of Confinement on Quantum Dots Using the Brus Equation", World J. Condens. Matter Phys., Vol. 02, pp. 96-100, 2012. https://doi.org/10.4236/wjcmp.2012.22017