DOI QR코드

DOI QR Code

수치모델을 이용한 인공증우에 따른 PM10 저감효과 분석

Analysis of PM10 Reduction Effects with Artificial Rain Enhancement Using Numerical Models

  • 임윤규 (국립기상과학원 기상응용연구부) ;
  • 김부요 (국립기상과학원 기상응용연구부) ;
  • 장기호 (국립기상과학원 기상응용연구부) ;
  • 차주완 (국립기상과학원 기상응용연구부) ;
  • 이용희 (국립기상과학원 기상응용연구부)
  • Lim, Yun-Kyu (Research Applications Department, National Institute of Meteorological Sciences, KMA) ;
  • Kim, Bu-Yo (Research Applications Department, National Institute of Meteorological Sciences, KMA) ;
  • Chang, Ki-Ho (Research Applications Department, National Institute of Meteorological Sciences, KMA) ;
  • Cha, Joo Wan (Research Applications Department, National Institute of Meteorological Sciences, KMA) ;
  • Lee, Yong Hee (Research Applications Department, National Institute of Meteorological Sciences, KMA)
  • 투고 : 2022.09.14
  • 심사 : 2022.11.11
  • 발행 : 2022.12.31

초록

Recently, interest in the possibility of a washout effect using artificial rain enhancement technology to reduce high-concentration fine dust is growing. Therefore, in this study, the reduction rate of PM10 concentration according to the amount of artificial rain enhancement was calculated during Asian Dust event which occurred over the Korean Peninsula on March 29, 2021 using air quality model [i.e., Community Multiscale Air Quality (CMAQ)] combined with the mesoscale model for artificial rain enhancement (i.e., WRF-MMS). According to WRF-MMS, the washout effect lasted 5 hours, and the maximum precipitation rate was calculated to be 1.5 mm hr-1. According the CMAQ results, the PM10 reduction rate was up to 22%, and the affected area was calculated to be 6.4 times greater than that of the artificial rain enhancement area. Even if the maximum amount of precipitation per hour is lowered to 0.8 mm hr-1 (about 50% level), the PM10 reduction rate appears to be up to 16%. In other words, it is believed that this technique can be used as a direct method for reducing high-concentration fine dust even when the artificial rain enhancement effect is weak.

키워드

과제정보

이 연구는 기상청 국립기상과학원 기상조절 및 구름물리 연구(KMA2018-00224)의 지원을 받았습니다.

참고문헌

  1. Appel, K. W., K. M. Foley, J. O. Bash, R. W. Pinder, R. L. Dennis, D. J. Allen, and K. Pickering, 2011: A multi-resolution assessment of the Community Multiscale Air Quality (CMAQ) model v4.7 wet deposition estimates for 2002-2006. Geosci. Model Dev., 4, 357-371, doi:10.5194/gmd-4-357-2011.
  2. Cha, J. W., and Coauthors, 2019: Analysis of results and techniques about precipitation enhancement by aircraft seeding in Korea. Atmosphere, 29, 481-499, doi:10.14191/Atmos.2019.29.4.481 (in Korean with English abstract).
  3. Chae, S., K.-H. Chang, S. Seo, J. Y. Jeong, B. J. Kim, C. K. Kim, S. S. Yum, and J. Kim, 2018: Numerical simulations of airborne glaciogenic cloud seeding using the WRF model with the modified Morrison scheme over the Pyeongchang region in the winter of 2016. Adv. Meteorol., 2018, 8453460, doi:10.1155/2018/8453460.
  4. Chang, J. S., R. A. Brost, I. S. A. Isaksen, S. Madronich, P. Middleton, W. R. Stockwell, and C. J. Walcek, 1987: A three-dimensional Eulerian acid deposition model: Physical concepts and formulation. J. Geophys. Res. Atmos., 92, 14681-14700. https://doi.org/10.1029/JD092iD12p14681
  5. Czernecki, B., M. Marosz, and J. Jedruszkiewicz, 2021: Assessment of machine learning algorithms in short-term forecasting of PM10 and PM2.5 concentrations in selected Polish agglomerations. Aerosol Air Qual. Res., 21, 200586, doi:10.4209/aaqr.200586.
  6. Ding, Y. H., and Y. J. Liu, 2014: Analysis of long-term variations of fog and haze in China in recent 50 years and their relations with atmospheric humidity. Sci. China Earth Sci., 57, 36-46, doi:10.1007/s11430-013-4792-1
  7. Gao, B., W. Ouyang, H. Cheng, Y. Xu, C. Lin, and J. Chen, 2019: Interactions between rainfall and fine particulate matter investigated by simultaneous chemical composition measurements in downtown Beijing. Atmos. Environ., 218, 117000, doi:10.1016/j.atmosenv.2019.117000.
  8. Guenther, A., T. Karl, P. Harley, C. Wiedinmyer, P. I. Palmer, and C. Geron, 2006: Estimates of global terrestrial isoprene emissions using MEGAN (model of emissions of gases and aerosols from nature). Atmos. Chem. Phys., 6, 3181-3210. https://doi.org/10.5194/acp-6-3181-2006
  9. Hur, S. K., C. H. Ho, J. Kim, H. R. Oh, and Y. S. Koo, 2021: Systematic bias of WRF-CMAQ PM10 simulations for Seoul, Korea. Atmos. Environ., 244, 117904, doi:10.1016/j.atmosenv.2020.117904.
  10. Jung, W., K.-H. Chang, J. W. Cha, J. M. Ku, and C. Lee, 2022: Estimation of available days for a cloud seeding experiment in Korea. J. Environ. Sci. Int., 31, 117-129, doi:10.5322/JESI.2022.31.2.117 (in Korean with English abstract).
  11. Kim, B.-Y., J. W. Cha, A.-R. Ko, W. Jung, and J.-C. Ha, 2020a: Analysis of the occurrence frequency of seed-able clouds on the Korean Peninsula for precipitation enhancement experiments. Remote Sens., 12, 1487, doi:10.3390/rs12091487.
  12. Kim, B.-Y., J. W. Cha, W. Jung, and A.-R. Ko, 2020b: Precipitation enhancement experiments in catchment areas of dams: Evaluation of water resource augmentation and economic benefits. Remote Sens., 12, 3730, doi:10.3390/rs12223730.
  13. Kim, B.-Y., Y. K. Lim, and J. W. Cha, 2022: Short-term prediction of particulate matter (PM10 and PM2.5) in Seoul, South Korea using tree-based machine learning algorithms. Atmos. Pollut. Res., 13, 101547, doi:10.1016/j.apr.2022.101547.
  14. Kim, C. K., S. S. Yum, and Y.-S. Park, 2015: A numerical study of winter orographic seeding experiments in Korea using the weather research and forecasting model. Meteorol. Atmos. Phys., 128, 23-38, doi:10.1007/s00703-015-0402-4.
  15. Kim, S. U., and K. Y. Kim, 2020: Physical and chemical mechanisms of the daily-to-seasonal variation of PM10 in Korea. Sci. Total Environ., 712, 136429, doi:10.1016/j.scitotenv.2019.136429.
  16. Kim, Y. P., and G. Lee, 2018: Trend of air quality in Seoul: policy and science. Aerosol Air Qual. Res., 18, 2141-2156, doi:10.4209/aaqr.2018.03.0081.
  17. Korneev, V. P., E. I. Potapov, and G. G. Shchukin, 2017: Environmental aspects of cloud seeding. Russ. Meteorol. Hydrol., 42, 477-483, doi:10.3103/S106837391707007X.
  18. Lee, S., C. H. Ho, and Y. S. Choi, 2011: High-PM10 concentration episodes in Seoul, Korea: background sources and related meteorological conditions. Atmos. Environ., 45, 7240-7247, doi:10.1016/j.atmosenv.2011.08.071.
  19. Minh, V. T. T., T. T. Tin, and T. T. Hien, 2021: PM2.5 forecast system by using machine learning and WRF model, a case study: Ho Chi Minh city, Vietnam. Aerosol Air Qual. Res., 21, 210108, doi:10.4209/aaqr.210108
  20. MOE, 2021: 2021 White Paper of Environment. Ministration of Environment, 914 pp (in Korean).
  21. NIMS, 2022: Operational Performance Report of Atmospheric Aircraft in 2021. National Institute of Meteorological Sciences, 81 pp (in Korean).
  22. Oh, H. R., C. H. Ho, Y. S. Koo, K. G. Baek, H. Y. Yun, S. K. Hur, D. R. Choi, J. G. Jhun, and J. S. Shim, 2020: Impact of Chinese air pollutants on a record-breaking PMs episode in the Republic of Korea for 11-15 January 2019. Atmos. Environ., 223, 117262, doi:10.1016/j.atmosenv.2020.117262.
  23. Ouyang, W., B. Guo, G. Cai, Q. Li, S. Han, B. Liu, and X. Liu, 2015: The washing effect of precipitation on particulate matter and the pollution dynamics of rainwater in downtown Beijing. Sci. Total Environ., 505, 306-314, doi:10.1016/j.scitotenv.2014.09.062.
  24. Park, S. U., J. H. Cho, and M. S. Park, 2012: A simulation of aerosols in Asia with the use of ADAM2 and CMAQ. Adv. Fluid Mech. Heat Mass Transfer, 258.
  25. Peterson, D. A., and Coauthors, 2019: Meteorology influencing springtime air quality, pollution transport, and visibility in Korea. Elementa Sci. Anthropocene, 7, 57, doi:10.1525/elementa.395.
  26. Press Trust of India, 2018: Air pollution: Delhi's overall air quality 'very poor', artificial rain may be induced. [Available online at https://swachhindia.ndtv.com/delhi-air-quality-worsens-artificial-rain-to-be-induced-28132/].
  27. Ryoo, S. B., J. Kim, and J. H. Cho, 2020: Performance of KMA-ADAM3 in identifying Asian dust days over Northern China. Atmosphere, 11, 593, doi:10.3390/atmos11060593.
  28. Support the Guardian, 2021: China 'modified' the weather to create clear skies for political celebration - study. [Available online at https://www.theguardian.com/world/2021/dec/06/china-modified-the-weather-to-create-clear-skies-for-political-celebration-study].
  29. Tessendorf, S. A., and Coauthors, 2019: A transformational approach to winter orographic weather modification research: The SNOWIE project. Bull. Am. Meteorol. Soc., 100, 71-92, doi:10.1175/BAMS-D-17-0152.1.
  30. Wang, H. J., and H. P. Chen, 2016: Understanding the recent trend of haze pollution in eastern China: Roles of climate change. Atmos. Chem. Phys., 16, 4205-4211, doi:10.5194/acp-16-4205-2016.
  31. Yang, G., H. Lee, and G. Lee, 2020: A hybrid deep learning model to forecast particulate matter concentration levels in Seoul, South Korea. Atmosphere, 11, 348, doi:10.3390/atmos11040348.