DOI QR코드

DOI QR Code

Formaldehyde Adsorption Properties of Activated Carbon Fiber-Papers by Nitrogen Plasma Treatment

질소 플라즈마 처리에 따른 활성탄소섬유 페이퍼의 포름알데하이드 흡착 특성

  • Min, Chung Gi (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Lim, Chaehun (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Myeong, Seongjae (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Lee, Young-Seak (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
  • 민충기 (충남대학교 응용화학공학과) ;
  • 임채훈 (충남대학교 응용화학공학과) ;
  • 명성재 (충남대학교 응용화학공학과) ;
  • 이영석 (충남대학교 응용화학공학과)
  • Received : 2022.09.16
  • Accepted : 2022.10.18
  • Published : 2022.12.10

Abstract

Formaldehyde is an indoor pollutant that is harmful to humans, such as causing respiratory and skin diseases. Nitrogen plasma treatment was performed to introduce nitrogen groups on the surface of the activated carbon fibers (ACFs), and the adsorption characteristics of formaldehyde for the surface-modified ACFs were considered. As the nitrogen gas flow rate increased, the content of nitrogen functional groups introduced to the surface of the ACFs increased by about 7%, and the ratio of nitrogen functional groups to each type present was similar. Ultramicropores increased on the ACFs surface due to the etching effect of plasma treatment. The adsorption efficiency of formaldehyde on the modified ACFs surface was also enhanced. However, under the nitrogen flow rate of 120 sccm or more, the surface of the ACFs was excessively etched, and the specific surface area and the formaldehyde adsorption capacity decreased. Therefore, the content of the nitrogen groups is the main factor in the adsorption of formaldehyde on the nitrogen plasma-treated ACFs, but it can be found that the adsorption efficiency of formaldehyde is improved when the ACFs have a suitable pore structure.

포름알데하이드는 호흡기 및 피부 질환을 일으키는 등 인체에 유해한 실내 환경 오염물질로 알려져 있다. 본 연구에서는 활성탄소섬유 표면에 질소 작용기를 도입하기 위하여 질소 플라즈마 처리를 하였고, 질소 작용기 함유 활성탄소섬유에 대한 포름알데하이드 흡착 특성을 고찰하였다. 주입되는 질소 가스의 유량이 증가함에 따라 활성탄소섬유 표면에 도입되는 질소 작용기의 함량이 약 7% 정도 증가하였으며, 존재하는 질소 작용기의 종류별 비율도 유사하였다. 또한 플라즈마 처리에 의한 식각 효과로 인하여 활성탄소섬유 표면에 초미세기공이 증가하였다. 이에 따라 표면 개질된 활성탄소섬유의 포름알데하이드 흡착 효율도 증가하였다. 그러나, 질소 유량이 120 sccm 이상인 조건에서는 활성탄소섬유 표면이 과도하게 식각되어, 비표면적이 감소하고 포름알데하이드 흡착 능력이 오히려 저하되었다. 따라서, 질소 플라즈마 처리된 활성탄소섬유의 포름알데하이드 흡착은 도입된 질소 작용기의 함량이 주요 요인이지만, 이와 함께 적합한 기공 구조를 가질 때 포름알데하이드의 흡착 효율이 향상됨을 알 수 있었다.

Keywords

Acknowledgement

본 연구는 한국 산업기술평가관리원의 탄소산업기반조성사업(고순도 가스 분리용 탄소분자체 및 시스템 제조기술 개발: 20016789)의 지원에 의하여 수행하였으며 이에 감사드립니다.

References

  1. M. S. Kamal, S. A. Razzak, and M. M. Hossain, Catalytic oxidation of volatile organic compounds (VOCs)-A review, Atmospheric Environ., 140, 117-134 (2016). https://doi.org/10.1016/j.atmosenv.2016.05.031
  2. X. Zhang, B. Gao, A. E. Creamer, C. Cao, and Y. Li, Adsorption of VOCs onto engineered carbon materials: A review, J. Hazard. Mater., 338, 102-123 (2017). https://doi.org/10.1016/j.jhazmat.2017.05.013
  3. L. Zhu, D. Shen, and K. H. Luo, A critical review on VOCs adsorption by different porous materials: Species, mechanisms and modification methods, J. Hazard. Mater., 389, 122102 (2020). https://doi.org/10.1016/j.jhazmat.2020.122102
  4. S. Suresh and T. J. Bandosz, Removal of formaldehyde on carbon-based materials: A review of the recent approaches and findings, Carbon, 137, 207-221 (2018). https://doi.org/10.1016/j.carbon.2018.05.023
  5. Q. Wen, C. Li, Z. Cai, W. Zhang, H. Gao, L. Chen, G. Zeng, X. Shu, and Y. Zhao, Study on activated carbon derived from sewage sludge for adsorption of gaseous formaldehyde, Bioresour. Technol., 102, 942-947 (2011). https://doi.org/10.1016/j.biortech.2010.09.042
  6. Z. Xu, L. Wang, and H. Hou, Formaldehyde removal by potted plant-soil systems, J. Hazard. Mater., 192, 314-318 (2011). https://doi.org/10.1016/j.jhazmat.2011.05.020
  7. M.-s. Li, S. C. Wu, Y.-H. Peng, and Y.-h. Shih, Adsorption of volatile organic vapors by activated carbon derived from rice husk under various humidity conditions and its statistical evaluation by linear solvation energy relationships, Sep. Purif. Technol., 170, 102-108 (2016). https://doi.org/10.1016/j.seppur.2016.06.029
  8. H. S. Lim, M.-J. Kim, E. Y. Kong, J.-d. Jeong, and Y.-S. Lee, Effect of oxyfluorination of activated carbon fibers on adsorption of benzene gas causing sick house syndrome, Appl. Chem. Eng., 29, 312-317 (2018). https://doi.org/10.14478/ACE.2018.1007
  9. V. Boonamnuayvitaya, S. Sae-ung, and W. Tanthapanichakoon, Preparation of activated carbons from coffee residue for the adsorption of formaldehyde, Sep. Purif. Technol., 42, 159-168 (2005). https://doi.org/10.1016/j.seppur.2004.07.007
  10. J. Pei and J. S. Zhang, On the performance and mechanisms of formaldehyde removal by chemi-sorbents, Chem. Eng. J., 167, 59-66 (2011). https://doi.org/10.1016/j.cej.2010.11.106
  11. J.-P. Bellat, I. Bezverkhyy, G. Weber, S. Royer, R. Averlant, J.-M. Giraudon, and J.-F. Lamonier, Capture of formaldehyde by adsorption on nanoporous materials, J. Hazard. Mater., 300, 711-717 (2015). https://doi.org/10.1016/j.jhazmat.2015.07.078
  12. C.-J. Na, M.-J. Yoo, D. C. Tsang, H. W. Kim, and K.-H. Kim, High-performance materials for effective sorptive removal of formaldehyde in air, J. Hazard. Mater., 366, 452-465 (2019). https://doi.org/10.1016/j.jhazmat.2018.12.011
  13. H. Rong, Z. Liu, Q. Wu, D. Pan, and J. Zheng, Formaldehyde removal by Rayon-based activated carbon fibers modified by P-aminobenzoic acid, Cellulose, 17, 205-214 (2010). https://doi.org/10.1007/s10570-009-9352-7
  14. B. C. Bai, E. A. Kim, C. W. Lee, Y.-S. Lee, and J. S. Im, Effects of surface chemical properties of activated carbon fibers modified by liquid oxidation for CO2 adsorption, Appl. Surf. Sci., 353, 158-164 (2015). https://doi.org/10.1016/j.apsusc.2015.06.046
  15. B. C. Bai, H.-U. Lee, C. W. Lee, Y.-S. Lee, and J. S. Im, N2 plasma treatment on activated carbon fibers for toxic gas removal: Mechanism study by electrochemical investigation, Chem. Eng. J., 306, 260-268 (2016). https://doi.org/10.1016/j.cej.2016.07.046
  16. M.-J. Jung, M.-S. Park, S. Lee, and Y.-S. Lee, Effect of e-beam radiation with acid drenching on surface properties of pitch-based carbon fibers, Appl. Chem. Eng., 27, 319-324 (2016). https://doi.org/10.14478/ACE.2016.1042
  17. K. Okajima, K. Ohta, and M. Sudoh, Capacitance behavior of activated carbon fibers with oxygen-plasma treatment, Electrochim. Acta, 50, 2227-2231 (2005). https://doi.org/10.1016/j.electacta.2004.10.005
  18. M.-S. Park, S. Lee, M.-J. Jung, H. G. Kim, and Y.-S. Lee, NO gas sensing ability of activated carbon fibers modified by an electron beam for improvement in the surface functional group, Carbon Lett., 20, 19-25 (2016). https://doi.org/10.5714/CL.2016.20.019
  19. C. Lim, C. H. Kwak, S. G. Jeong, D. Kim, and Y.-S. Lee, Enhanced CO2 adsorption of activated carbon with simultaneous surface etching and functionalization by nitrogen plasma treatment, Carbon Lett., 1-7 (2022).
  20. H.-C. Huang, D.-Q. Ye, and B.-C. Huang, Nitrogen plasma modification of viscose-based activated carbon fibers, Surf. Coat. Technol., 201, 9533-9540 (2007). https://doi.org/10.1016/j.surfcoat.2007.04.029
  21. R. Lee, C. H. Kwak, H. Lee, S. Kim, and Y.-S. Lee, Effect of nitrogen plasma surface treatment of rice husk-based activated carbon on electric double- layer capacitor performance, Appl. Chem. Eng., 33, 71-77 (2022).
  22. E. J. Song, M.-J. Kim, J.-I. Han, Y. J. Choi, and Y.-S. Lee, Gas adsorption characteristics of by interaction between oxygen functional groups introduced on activated carbon fibers and acetic acid molecules, Appl. Chem. Eng., 30, 160-166 (2019). https://doi.org/10.14478/ACE.2018.1122
  23. G. de Falco, M. Barczak, F. Montagnaro, and T. J. Bandosz, A new generation of surface active carbon textiles as reactive adsorbents of indoor formaldehyde, ACS Appl. Mater. Interfaces, 10, 8066-8076 (2018). https://doi.org/10.1021/acsami.7b19519
  24. G. de Falco, W. Li, S. Cimino, and T. J. Bandosz Role of sulfur and nitrogen surface groups in adsorption of formaldehyde on nanoporous carbons, Carbon, 138, 283-291 (2018). https://doi.org/10.1016/j.carbon.2018.05.067
  25. K. J. Lee, J. Miyawaki, N. Shiratori, S.-H. Yoon, and J. Jang, Toward an effective adsorbent for polar pollutants: Formaldehyde adsorption by activated carbon, J. Hazard. Mater., 260, 82-88 (2013). https://doi.org/10.1016/j.jhazmat.2013.04.049
  26. Y. Song, W. Qiao, S. H. Yoon, I. Mochida, Q. Guo, and L. Liu, Removal of formaldehyde at low concentration using various activated carbon fibers, J. Appl. Polym. Sci., 106, 2151-2157 (2007). https://doi.org/10.1002/app.26368
  27. C. Su, K. Liu, J. Zhu, H. Chen, H. Li, Z. Zeng, and L. Li, Adsorption effect of nitrogen, sulfur or phosphorus surface functional group on formaldehyde at ambient temperature: Experiments associated with calculations, Chem. Eng. J., 393, 124729 (2020). https://doi.org/10.1016/j.cej.2020.124729