DOI QR코드

DOI QR Code

Self-pressurization Effect and PEMFC Performance Improvement Using Metal Foam Compression

금속 폼 압축에 의한 자가 가압 효과 및 PEMFC 성능 개선

  • Kim, Hyeonwoo (School of Chemical Engineering, University of Ulsan) ;
  • Kim, Junbom (School of Chemical Engineering, University of Ulsan)
  • Received : 2022.10.24
  • Accepted : 2022.11.26
  • Published : 2022.12.10

Abstract

The bipolar plate is a key component of the polymer electrolyte membrane fuel cell (PEMFC) that transfers reactants and electrons, discharges water and heat as by-products, and serves as a mechanical support for the membrane electrode assembly (MEA). Therefore, the flow field structure of the bipolar plate plays an important role in improving fuel cell performance. In this study, PEMFC performance was investigated with copper foams with different compressibility ratios applied to cathode bipolar plates using a 25 cm2 unit cell. The total resistance decreased as the compressibility ratio of the metal foams increased, and, in particular, the charge transfer and mass transfer resistance were significantly improved compared to the serpentine flow field, lowering voltage loss in medium and high current density region. In the case of pressurized air reactant flow with serpentine structure, fuel cell performance was similar to that of a compressed metal foam flow field (S3) up to the medium current density region, but low performance appeared in the high current density region due to flow field structure limitations.

분리판은 반응물 및 전자를 전달하고 부산물인 물과 열을 배출하며, 막전극접합체의 지지체 역할을 하는 고분자전해질 연료전지의 핵심 구성요소이다. 따라서 분리판의 유로 구조는 연료전지의 성능을 향상시키는데 중요한 역할을 한다. 본 연구에서는 압축률이 다른 구리 폼을 cathode 분리판에 적용한 25 cm2 단위 전지를 이용하여 성능 평가를 수행하였다. 금속 폼의 압축률이 증가할수록 총 저항이 감소하였으며, 특히 전하전달과 물질전달 저항이 사형 유로에 비해 크게 개선되어 중전류밀도 및 고전류밀도 영역에서 전압 손실을 줄일 수 있었다. 가압한 공기를 사용한 사형 유로 구조의 경우 연료전지의 성능이 압축한 금속 폼(S3)을 적용한 유로와 중전류밀도 영역까지는 큰 차이가 없었으나, 고전류밀도 영역에서는 유로 구조의 한계로 낮은 성능을 보였다.

Keywords

Acknowledgement

이 논문은 2022년 울산대학교 연구비에 의하여 연구되었음.

References

  1. E. Ogungbemi, T. Wilberforce, O. Ijaodola, J. Thompson, and A. G. Olabi, Selection of proton exchange membrane fuel cell for transportation, Int. J. Hydrog. Energy, 46, 30625-30640 (2020).
  2. E. Ogungbemi, O. Ijaodola, F. N. Khatib, T. Wilberforce, Z. El Hassan, J. Thompson, M. Ramadan, and A. G. Olabi, Fuel cell membranes - pros and cons, Energy, 172, 155-172 (2019). https://doi.org/10.1016/j.energy.2019.01.034
  3. A. G. Olabi, T. Wilberforce, and M. A. Abdelkareem, Fuel cell application in the automotive industry and future perspective, Energy, 214, 118955 (2021). https://doi.org/10.1016/j.energy.2020.118955
  4. Y. Wang, D. F. Ruiz Diaz, K. S. Chen, Z. Wang, and X. C. Adroher, Materials, technological status, and fundamentals of PEM fuel cells - A reivew, Mater. Today, 32, 178-203 (2020). https://doi.org/10.1016/j.mattod.2019.06.005
  5. S. Satyapal, US Department of Energy Hydrogen Program: 2021 Annual Merit Review and Peer Evaluation Report; June 7-11, 2021, National Renewable Energy Lab.(NREL), Golden, CO (United States) (2022).
  6. P. Sharma and O. P. Pandey, Proton exchange membrane fuel cells: fundamentals, advanced technologies, and practical applications, In: G. Kaur (ed.). PEM Fuel Cells: Fundamentals, Advanced Technologies, and Practical Application, 1st, 1-24, Elsevier, Amsterdam (2021).
  7. T. Wilberforce, Z. El Hassan, E. Ogungbemi, O. Ijaodola, F. N. Khatib, A. Durrant, J. Thompson, A. Baroutaji, and A. G. Olabi, A comprehensive study of the effect of bipolar plate (BP) geometry design on the performance of proton exchange membrane (PEM) fuel cells, Renew. Sustain. Energy Rev., 111, 236-260 (2019). https://doi.org/10.1016/j.rser.2019.04.081
  8. B. H. Lim, E. H. Majlan, W. R. W. Daud, T. Husaini, and M. I. Rosli, Effects of flow field design on water management and reactant distribution in PEMFC: A review, Ionics, 22, 301-316 (2016). https://doi.org/10.1007/s11581-016-1644-y
  9. Y. Vazifeshenas, K. Sedighi, and M. Shakeri, Numerical investigation of a novel compound flow-field for PEMFC performance improvement, Int. J. Hydrog. Energy, 40, 15032-15039 (2015). https://doi.org/10.1016/j.ijhydene.2015.08.077
  10. M. Kim, C. Kim, and Y. Sohn, Application of metal foam as a flow field for PEM fuel cell stack, Fuel Cell, 18, 123-128 (2018). https://doi.org/10.1002/fuce.201700180
  11. K. Jiao and X. Li, Water transport in polymer electrolyte membrane fuel cells, Prog. Energy Combust. Sci., 37, 221-291 (2011). https://doi.org/10.1016/j.pecs.2010.06.002
  12. Y. Zhang, Y. Tao, and J. Shao, Application of porous materials for the flow field in polymer electrolyte membrane fuel cells, J. Power Sources, 492, 229664 (2021). https://doi.org/10.1016/j.jpowsour.2021.229664
  13. M. Sajid Hossain and B. Shabani, Metal foams application to enhance cooling of open cathode polymer electrolyte membrane fuel cells, J. Power Sources, 295, 275-291 (2015). https://doi.org/10.1016/j.jpowsour.2015.07.022
  14. M. E. Kim and Y. J. Sohn, Study on polymer electrolyte fuel cells with nonhumidification using metal foam in dead-ended operation, Energies, 13, 1238 (2020). https://doi.org/10.3390/en13051238
  15. G. Zhang, Z. Bao, B. Xie, Y. Wang, and K. Jiao, Three-dimensional multi-phase simulation of PEM fuel cell considering the full morphology of metal foam flow field, Int. J. Hydrog. Energy, 46, 2978-2989 (2021). https://doi.org/10.1016/j.ijhydene.2020.05.263
  16. O. Ijaodola, E. Ogungbemi, F. N. Khatib, T. Wilberforce, M. Ramadan, Z. El Hassan, J. Thompson, and A. G. Olabi, Evaluating the effect of metal bipolar plate coating on the performance of proton exchange membrane fuel cells, Energies, 11, 3203 (2018). https://doi.org/10.3390/en11113203
  17. W. C. Tan, L. H. Saw, H. S. Thiam, J. Xuan, Z. Cai, and M. C. Yew, Overview of porous media/metal foam application in fuel cells and solar power systems, Renew. Sustain. Energy Rev., 96, 181-197 (2018). https://doi.org/10.1016/j.rser.2018.07.032
  18. A. Kulshreshtha and S. K. Dhakad, Preparation of metal foam by different methods: A review, Mater. Today Proc., 26, 1784-1790 (2020). https://doi.org/10.1016/j.matpr.2020.02.375
  19. T. Wilberforce, O. Ijaodola, A. Baroutaji, E. Ogungbemi, and A. G. Olabi, Effect of bipolar plate material on proton exchange membrane fuel cell performance, Energies, 15, 1886 (2022). https://doi.org/10.3390/en15051886
  20. D. K. Shin, J. H. Yoo, D. G. Kang, and M. S. Kim, Effect of cell size in metal foam inserted to the air channel of polymer electrolyte membrane fuel cell for high performance, Renew. Energy, 115, 663-675 (2018). https://doi.org/10.1016/j.renene.2017.08.085
  21. J. E. Park, W. Hwang, M. S. Lim, S. Kim, C. Y. Ahn, O. H. Kim, J. G. Shim, D. W. Lee, J. H. Lee, Y. H. Cho, and Y. E. Sung, Achieving breakthrough performance caused by optimized metal foam flow field in fuel cells, Int. J. Hydrog. Energy, 44, 22074-22084 (2019). https://doi.org/10.1016/j.ijhydene.2019.06.073
  22. D. G. Kang, D. K. Lee, J. M. Choi, D. K. Shin, and M. S. Kim, Study on the metal foam flow field with porosity gradient in the polymer electrolyte membrane fuel cell, Renew. Energy, 156, 931-941 (2020). https://doi.org/10.1016/j.renene.2020.04.142
  23. S. Mohsen Mousavi Ehteshami, Amirhooshang Taheri, and S. H. Chan, A review on ions induced contamination of polymer electrolyte membrane fuel cells, poisoning mechanisms and mitigation approaches, J. Ind. Eng. Chem., 34, 1-8 (2016). https://doi.org/10.1016/j.jiec.2015.10.034
  24. B. Shabani, M. Hafttananian, S. Khamani, A. Ramiar, and A. A. Ranjbar, Poisoning of proton exchange membrane fuel cells by contaminants and impurities: Review of mechanisms, effects, and mitigation strategies, J. Power Sources, 427, 21-48 (2019). https://doi.org/10.1016/j.jpowsour.2019.03.097
  25. R. A. Antunes, M. C. L. Oliveria, G. Ett, and V. Ett, Corrosion of metal bipolar plates for PEM fuel cells: A review, Int. J. Hydrog. Energy, 35, 3632-3647 (2010). https://doi.org/10.1016/j.ijhydene.2010.01.059
  26. S. Karimi, N. Fraser, B. Roberts, and F. R. Foulkes, A review of metallic bipolar plates for proton exchange membrane fuel cells: materials and fabrication methods, Adv. Mater. Sci. Eng., 2012, 1-22 (2012).
  27. Y. H. Lee, S. M. Li, C. J. Tseng, C. Y. Su, S. C. Lin, and J.W. Jhuang, Graphene as corrosion protection for metal foam flow distributor in proton exchange membrane fuel cells, Int. J. Hydrog. Energy, 42, 22201-22207 (2017). https://doi.org/10.1016/j.ijhydene.2017.03.233
  28. Y. Sim, J. Kwak, S. Y. Kim, Y. Jo, S. Kim, S. Y. Kim, J. H. Kim, C. S. Lee, J. H. Jo, and S. Y. Kwon, Formation of 3D graphene-Ni foam heterostructures with enhanced performance and durability for bipolar plates in a polymer electrolyte membrane fuel cell, J. Mater. Chem. A., 6, 1504-1512 (2018). https://doi.org/10.1039/C7TA07598G
  29. C. J. Tseng, B. T. Tsai, Z. S. Liu, T. C. Cheng, W. C. Chang, and S. K. Lo, A PEM fuel cell with metal foam as flow distributor, Energy Convers. Manag., 62, 14-21 (2012). https://doi.org/10.1016/j.enconman.2012.03.018