DOI QR코드

DOI QR Code

Gallic acid-mitochondria targeting sequence-H3R9 induces mitochondria-targeted cytoprotection

  • Bae, Yoonhee (Department of Physiology, Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutic Center, Inje University College of Medicine) ;
  • Kim, Goo-Young (Department of Biology and Clinical Pharmacology, R&D Center, Samyang Biopharmaceuticals Corporation) ;
  • Jessa, Flores (Department of Physiology, Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutic Center, Inje University College of Medicine) ;
  • Ko, Kyung Soo (Department of Physiology, Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutic Center, Inje University College of Medicine) ;
  • Han, Jin (Department of Physiology, Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutic Center, Inje University College of Medicine)
  • Received : 2021.04.01
  • Accepted : 2021.10.21
  • Published : 2022.01.01

Abstract

The development of selective targeting of drug molecules towards the mitochondria is an important issue related to therapy efficacy. In this study, we report that gallic acid (GA)-mitochondria targeting sequence (MTS)-H3R9 exhibits a dual role as a mitochondria-targeting vehicle with antioxidant activity for disease therapy. In viability assays, GA-MTS-H3R9 showed a better rescue action compared to that of MTS-H3R9. GA-MTS-H3R9 dramatically exhibited cell penetration and intercellular uptake compared to MTS and fit escape from lysosome release to the cytosol. We demonstrated the useful targeting of GA-MTS-H3R9 towards mitochondria in AC16 cells. Also, we observed that the antioxidant properties of mitochondrial-accrued GA-MTS-H3R9 alleviated cell damage by reactive oxygen species production and disrupted mitochondrial membrane potential. GA-MTS-H3R9 showed a very increased cytoprotective effect against anticancer activity compared to that of MTS-H3R9. We showed that GA-MTS-H3R9 can act as a vehicle for mitochondria-targeting and as a reagent for therapeutic applications intended for cardiovascular disease treatment.

Keywords

Acknowledgement

This research was supported by the Basic Research Lab Program (2020R1A4A1018943) and the Basic Science Research Program (2018R1A2A3074998, 2019R1I1A1A01061429) through the National Research Foundation of Korea funded by the Ministry of Science and ICT, Korea.

References

  1. Wolfram JA, Donahue JK. Gene therapy to treat cardiovascular disease. J Am Heart Assoc. 2013;2:e000119. https://doi.org/10.1161/JAHA.113.000119
  2. Leo CH, Jelinic M, Ng HH, Parry LJ, Tare M. Recent developments in relaxin mimetics as therapeutics for cardiovascular diseases. Curr Opin Pharmacol. 2019;45:42-48. https://doi.org/10.1016/j.coph.2019.04.001
  3. Rossignol P, Hernandez AF, Solomon SD, Zannad F. Heart failure drug treatment. Lancet. 2019;393:1034-1044. https://doi.org/10.1016/S0140-6736(18)31808-7
  4. Dvir T, Bauer M, Schroeder A, Tsui JH, Anderson DG, Langer R, Liao R, Kohane DS. Nanoparticles targeting the infarcted heart. Nano Lett. 2011;11:4411-4414. https://doi.org/10.1021/nl2025882
  5. Tan KX, Pan S, Jeevanandam J, Danquah MK. Cardiovascular therapies utilizing targeted delivery of nanomedicines and aptamers. Int J Pharm. 2019;558:413-425. https://doi.org/10.1016/j.ijpharm.2019.01.023
  6. Mahapatro A, Singh DK. Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines. J Nanobiotechnology. 2011;9:55. https://doi.org/10.1186/1477-3155-9-55
  7. Sanna V, Pala N, Sechi M. Targeted therapy using nanotechnology: focus on cancer. Int J Nanomedicine. 2014;9:467-483. https://doi.org/10.2147/IJN.S36654
  8. Calzoni E, Cesaretti A, Polchi A, Di Michele A, Tancini B, Emiliani C. Biocompatible polymer nanoparticles for drug delivery applications in cancer and neurodegenerative disorder therapies. J Funct Biomater. 2019;10:4. https://doi.org/10.3390/jfb10010004
  9. Cosentino K, Garcia-Saez AJ. Mitochondrial alterations in apoptosis. Chem Phys Lipids. 2014;181:62-75. https://doi.org/10.1016/j.chemphyslip.2014.04.001
  10. Rin Jean S, Tulumello DV, Wisnovsky SP, Lei EK, Pereira MP, Kelley SO. Molecular vehicles for mitochondrial chemical biology and drug delivery. ACS Chem Biol. 2014;9:323-333. https://doi.org/10.1021/cb400821p
  11. Weissig V, Boddapati SV, Jabr L, D'Souza GG. Mitochondria-specific nanotechnology. Nanomedicine (Lond). 2007;2:275-285. https://doi.org/10.2217/17435889.2.3.275
  12. Lin R, Zhang P, Cheetham AG, Walston J, Abadir P, Cui H. Dual peptide conjugation strategy for improved cellular uptake and mitochondria targeting. Bioconjug Chem. 2015;26:71-77. https://doi.org/10.1021/bc500408p
  13. Klimpel A, Neundorf I. Bifunctional peptide hybrids targeting the matrix of mitochondria. J Control Release. 2018;291:147-156. https://doi.org/10.1016/j.jconrel.2018.10.029
  14. von Heijne G. Mitochondrial targeting sequences may form amphiphilic helices. EMBO J. 1986;5:1335-1342. https://doi.org/10.1002/j.1460-2075.1986.tb04364.x
  15. Yu GS, Han J, Ko KS, Choi JS. Cationic oligopeptide-conjugated mitochondria targeting sequence as a novel carrier system for mitochondria. Macromol Res . 2014;22:42-46. https://doi.org/10.1007/s13233-014-2003-3
  16. Schmidt N, Mishra A, Lai GH, Wong GC. Arginine-rich cell-penetrating peptides. FEBS Lett. 2010;584:1806-1813. https://doi.org/10.1016/j.febslet.2009.11.046
  17. Bae Y, Joo C, Kim GY, Ko KS, Huh KM, Han J, Choi JS. Cationic oligopeptide-functionalized mitochondria targeting sequence show mitochondria targeting and anticancer activity. Macromol Res. 2019;27:1071-1080. https://doi.org/10.1007/s13233-019-7153-x
  18. Xie M, Hu B, Wang Y, Zeng X. Grafting of gallic acid onto chitosan enhances antioxidant activities and alters rheological properties of the copolymer. J Agric Food Chem. 2014;62:9128-9136. https://doi.org/10.1021/jf503207s
  19. Perron NR, Brumaghim JL. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem Biophys. 2009;53:75-100. https://doi.org/10.1007/s12013-009-9043-x
  20. Bae Y, Green ES, Kim GY, Song SJ, Mun JY, Lee S, Park JI, Park JS, Ko KS, Han J, Choi JS. Dipeptide-functionalized polyamidoamine dendrimer-mediated apoptin gene delivery facilitates apoptosis of human primary glioma cells. Int J Pharm. 2016;515:186-200. https://doi.org/10.1016/j.ijpharm.2016.09.083
  21. Bae Y, Jung MK, Lee S, Song SJ, Mun JY, Green ES, Han J, Ko KS, Choi JS. Dequalinium-based functional nanosomes show increased mitochondria targeting and anticancer effect. Eur J Pharm Biopharm. 2018;124:104-115. https://doi.org/10.1016/j.ejpb.2017.12.013
  22. AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 2009;3:279-290. https://doi.org/10.1021/nn800596w
  23. Holder AL, Goth-Goldstein R, Lucas D, Koshland CP. Particleinduced artifacts in the MTT and LDH viability assays. Chem Res Toxicol. 2012;25:1885-1892. https://doi.org/10.1021/tx3001708
  24. Yang Y, Xiang Y, Xu M. From red to green: the propidium iodidepermeable membrane of Shewanella decolorationis S12 is repairable. Sci Rep. 2015;5:18583. https://doi.org/10.1038/srep18583
  25. Xiang L, Xie G, Liu C, Zhou J, Chen J, Yu S, Li J, Pang X, Shi H, Liang H. Knock-down of glutaminase 2 expression decreases glutathione, NADH, and sensitizes cervical cancer to ionizing radiation. Biochim Biophys Acta. 2013;1833:2996-3005. https://doi.org/10.1016/j.bbamcr.2013.08.003
  26. Soumya RS, Vineetha VP, Salin Raj P, Raghu KG. Beneficial properties of selenium incorporated guar gum nanoparticles against ischemia/reperfusion in cardiomyoblasts (H9c2). Metallomics. 2014;6:2134-2147. https://doi.org/10.1039/C4MT00241E
  27. He H, Li DW, Yang LY, Fu L, Zhu XJ, Wong WK, Jiang FL, Liu Y. A novel bifunctional mitochondria-targeted anticancer agent with high selectivity for cancer cells. Sci Rep. 2015;5:13543. https://doi.org/10.1038/srep13543
  28. Perelman A, Wachtel C, Cohen M, Haupt S, Shapiro H, Tzur A. JC-1: alternative excitation wavelengths facilitate mitochondrial membrane potential cytometry. Cell Death Dis. 2012;3:e430. https://doi.org/10.1038/cddis.2012.171
  29. Sancho P, Galeano E, Nieto E, Delgado MD, Garcia-Perez AI. Dequalinium induces cell death in human leukemia cells by early mitochondrial alterations which enhance ROS production. Leuk Res. 2007;31:969-978. https://doi.org/10.1016/j.leukres.2006.11.018
  30. Madani F, Lindberg S, Langel U, Futaki S, Graslund A. Mechanisms of cellular uptake of cell-penetrating peptides. J Biophys. 2011;2011:414729.