DOI QR코드

DOI QR Code

Genetic parameters for somatic cell score, milk yield and type traits in Nigerian Dwarf goats

  • Valencia-Posadas, Mauricio (Departamento de Veterinaria y Zootecnia, Division de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato) ;
  • Lechuga-Arana, Alma Arianna (Programa de Doctorado en Biociencias, Division de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato) ;
  • Avila-Ramos, Fidel (Departamento de Veterinaria y Zootecnia, Division de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato) ;
  • Shepard, Lisa (American Dairy Goat Association) ;
  • Montaldo, Hugo H. (Departamento de Genetica y Bioestadistica, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria)
  • 투고 : 2021.03.28
  • 심사 : 2021.05.24
  • 발행 : 2022.03.01

초록

Objective: This study was conducted to estimate multi-trait genetic parameters for somatic cell score (SCS), milk yield and type traits in Nigerian Dwarf (ND) goats from the United States. Methods: Data from 1,041 ND goats in the United States with kiddings in 95 herds were used to estimate multi-trait genetic parameters for SCS, milk (MILK), fat (FAT), and protein (PROT) yields, and 14 type traits. An 18-trait mixed linear animal model for lactation mean SCS (Log2), MILK, FAT, PROT, and 14 type traits was applied. A factor analytic approach (FA1) in ASReml software was used to obtain convergence. Results: Averages for SCS were low (2.85±1.29 Log2), and were 314±110.6, 20.9±7.4, and 14±4.9 kg, respectively, for MILK, FAT, and PROT. Heritabilities for SCS, MILK, FAT, and PROT were 0.32, 0.16, 0.16, and 0.10, respectively. The highest heritabilities for type traits were for stature (0.72), teat diameter (0.49), and rump width (0.48), and the lowest estimates were for dairyness (0.003) and medial suspensory ligament (0.03). Genetic correlations of SCS with MILK, FAT, and PROT were positive but low (0.25, 0.18, and 0.23, respectively). Genetic and phenotypic correlations between MILK, FAT, and PROT were high and positive (≥0.66). Absolute values of genetic correlations involving SCS with type traits were generally low or no different from zero. Most of the phenotypic correlations involving SCS with type traits were low. No serious unfavorable genetic correlations between milk yield traits and SCS or between milk yield traits or SCS and type traits were found. Conclusion: Genetic variation exists in the ND breed for most studied traits. The development of selection programs based on these estimates may help accelerate favorable multi-trait genetic changes in this breed.

키워드

과제정보

We would like to thank American Dairy Goat Association and George Wiggans from AIPL-USDA for providing data; Arthur Gilmour for his generous and crucial advice on ASReml analysis, and Kristine Ibsen for her assistance with the English edition of the manuscript. M. V.-P., F. A.-R. and H. H.M. are members of the National System of Researchers from CONACYT, Mexico.

참고문헌

  1. Van Vleck LD. Selection index and introduction to mixed model methods. Boca Raton, FL, USA: CRC Press; 1993.
  2. Mathew B, Holand AM, Koistinen P, Leon J, Sillanpaa MJ. Reparametrization-based estimation of genetic parameters in multi-trait animal model using Integrated Nested Laplace Approximation. Theor Appl Genet 2016;129:215-25. https://doi.org/10.1007/s00122-015-2622-x
  3. American Dairy Goat Association [Internet]. Dairy goat history [cited 2020 Dec 10]. Steps for ADGA DHIR. THE DETAILS: ADGA's DHIR Program, Plans, & Test Types. ADGA Breed Standards [cited 2021 Jan 12]. DHIR Breed averages - 2019 lactations [cited 2021 Feb 17]. ADGA Plus, DHIR & Linear Appraisal; c2004 [cited 2020 Nov 16]. Available from: http://adga.org
  4. Rupp R, Clement V, Piacere A, Robert-Granie C, Manfredi E. Genetic parameters for milk somatic cell score and relationship with production and udder type traits in dairy Alpine and Saanen primiparous goats. J Dairy Sci 2011;94:3629-34. https://doi.org/10.3168/jds.2010-3694
  5. Murital I, Afolayan O, Bemji MN, et al. Genetic diversity and population structure of Nigerian indigenous goat using DNA microsatellite markers. Arch Zootec 2015;64:93-8. https://doi.org/10.21071/az.v64i246.382
  6. Notter DR. The importance of genetic diversity in livestock populations of the future. J Anim Sci 1999;77:61-9. https://doi.org/10.2527/1999.77161x
  7. American Dairy Goat Association. Linear appraisal system for dairy goats. Linear Appraisal Program, Spindale, NC, USA: ADGA Press; 2014.
  8. Wiggans GR, Hubbard SM. Genetic evaluation of yield and type traits of dairy goats in the United States. J Dairy Sci 2001; 84(E-Suppl):E69-73. https://doi.org/10.3168/jds.S0022-0302(01)70199-3
  9. Agricultural Research Service [Internet]. Animal Improvement Programs Laboratory. USDA Somatic Cell Score Evaluation; c2005 [cited 2021 Feb 19]. Available from: https://www.aipl.arsusda.gov/reference/scspl/scs.htm
  10. Luo MF, Wiggans GR, Hubbard S. Variance component estimation and multitrait genetic evaluation for type traits of dairy goats. J Dairy Sci 1997;80:594-600. https://doi.org/10.3168/jds.S0022-0302(97)75975-7
  11. Garcia-Peniche TB, Montaldo HH, Valencia-Posadas M, et al. Breed differences over time and heritability estimates for production and reproduction traits of dairy goats in the United States. J Dairy Sci 2012;95:2707-17. https://doi.org/10.3168/jds.2011-4714
  12. Gilmour AR, Gogel BJ, Cullis BR, Welham S, Thompson R. ASReml user guide release 4.1 structural specification. Hemel Hempstead, Australia: VSN international ltd; 2015.
  13. Isik F, Holland J, Maltecca C. Genetic data analysis for plant and animal breeding (Vol. 400). New York, USA: Springer International Publishing; 2017.
  14. Windig JJ. The calculation and significance testing of genetic correlations across environments. J Evol Biol 1997;10:853-74. https://doi.org/10.1111/j.1420-9101.1997.tb00002.x
  15. Scholtens MR, Lopez-Villalobos N, Garrick D, Blair H, Lehnert K, Snell R. Genetic parameters for total lactation yields of milk, fat, protein, and somatic cell score in New Zealand dairy goats. Anim Sci J 2020;91:e13310. https://doi.org/10.1111/asj.13310
  16. Apodaca-Sarabia CA, Lopez-Villalobos N, Blair HT, Prosser CG. Genetic parameters for somatic cell score in dairy goats estimated by random regression. In: Proceedings of the New Zealand Society of Animal Production. Wellington, New Zealand. New Zealand Society of Animal Production; 2009. Vol 69. pp. 206-9. https://www.nzsap.org/system/files/pro-ceedings/2009/ab09049.pdf
  17. Csanadi J, Fenyvessy J, Bohata S. Somatic cell count of milk from different goat breeds. Acta Univ Sapien Aliment 2015;8:45-54. https://doi.org/10.1515/ausal-2015-0003
  18. Barron-Bravo OG, Gutierrez-Chavez AJ, Angel-Sahagun CA, Montaldo HH, Shepard L, Valencia-Posadas M. Losses in milk yield, fat and protein contents according to different levels according of somatic cell count in dairy goats. Small Rumin Res 2013;113:421-31. https://doi.org/10.1016/j.smallrumres.2013.04.003
  19. Egwu GO, Onyeyili PA, Chibuzo GA, Ameh JA. Improved productivity of goats and utilisation of goat milk in Nigeria. Small Rumin Res 1995;16:195-201. https://doi.org/10.1016/0921-4488(95)00630-4
  20. Bagnicka E, Lukaszewicz M, Adnoy T. Genetic parameters of somatic cell score and lactose content in goat's milk. J Anim Feed Sci 2016;25:210-5. https://doi.org/10.22358/jafs/65552/2016
  21. Bagnicka E, Distl O, Hamann H, Lukaszewicz M. Heritabilities of and genetic correlations between the dairy traits in goats estimated in first vs later lactations. Anim Sci Pap Rep 2004;22:205-13.
  22. Castaneda-Bustos VJ, Montaldo HH, Valencia-Posadas M, et al. Linear and nonlinear genetic relationships between type traits and productive life in US dairy goats. J Dairy Sci 2017;100:1232-45. https://doi.org/10.3168/jds.2016-11313
  23. Arnal M, Larroque H, Leclerc H, Ducrocq V, Robert-Granie C. Genetic parameters for first lactation dairy traits in the Alpine and Saanen goat breeds using a random regression test-day model. Gen Sel Evol 2019;51:43. https://doi.org/10.1186/s12711-019-0485-3
  24. Castaneda-Bustos VJ, Montaldo HH, Torres-Hernandez G, et al. Estimation of genetic parameters for productive life, reproduction, and milk-production traits in US dairy goats. J Dairy Sci 2014;97:2462-73. https://doi.org/10.3168/jds.2013-7503
  25. Valencia-Posadas M, Lechuga-Arana AA, Castaneda-Bustos VJ, et al. Genetic parameters for conformation traits in seven goat breeds. In: Proceedings of the World Congress of Genetic Applied to Livestock Production, Auckland, New Zealand 2018: 2018 Feb 11-16, Caprine, 893; 2018. pp. 1. http://www.wcgalp.org/system/files/proceedings/2018/genetic-parametersconformation-traits-seven-goat-breeds.pdf
  26. Manfredi E, Piacere A, Lahaye P, Ducrocq V. Genetic parameters of type appraisal in Saanen and Alpine goats. Livest Prod Sci 2001;70:183-9. https://doi.org/10.1016/S0301-6226(01)00180-4
  27. Torres-Vazquez JA, Valencia-Posadas M, Castillo-Juarez H, Montaldo HH. Genetic and phenotypic parameters of milk yield, milk composition and age at first kidding in Saanen goats from Mexico. Livest Sci 2009;126:147-53. https://doi.org/10.1016/j.livsci.2009.06.008
  28. McLaren A, Mucha S, Mrode R, Coffey M, Conington J. Genetic parameters of linear conformation type traits and their relationship with milk yield throughout lactation in mixed-breed dairy goats. J Dairy Sci 2016;99:5516-25. https://doi.org/10.3168/jds.2015-10269
  29. Montaldo HH, Martinez-Lozano FJ. Phenotypic relationships between udder and milking characteristics, milk production and California mastitis test in goats. Small Rumin Res 1993; 12:329-37. https://doi.org/10.1016/0921-4488(93)90068-S
  30. Valencia-Posadas M, Barboza-Corona JE, Angel-Sahagun AS, Gutierrez-Chavez AJ, Martinez-Jaime OA, Montaldo HH. Phenotypic correlations between milk production and conformation traits in goats. Acta Univ 2017;27:3-8. https://doi.org/10.15174/au.2017.1093