DOI QR코드

DOI QR Code

네트워크 약리학적 분석에 의한 소세포폐암에 대한 청대의 항암기전 연구

Identifying the Anti-Cancer Effect of Indigo Naturalis in Small Cell Lung Cancer Based on Network Pharmacological Analysis

  • 김영훈 (부산대학교 한의학전문대학원) ;
  • 정우진 (부산대학교 한의학전문대학원) ;
  • 정광희 (부산대학교 한의학전문대학원) ;
  • 김윤숙 (부산대학교 장수웰빙연구소) ;
  • 안원근 (부산대학교 한의학전문대학원)
  • Young Hoon, Kim (School of Korean Medicine, Pusan National University) ;
  • Woo Jin, Jeong (School of Korean Medicine, Pusan National University) ;
  • Gwang Hee, Jeong (School of Korean Medicine, Pusan National University) ;
  • Youn Sook, Kim (Research Institute for Longevity and Well-Being, Pusan National University) ;
  • Won Gun, An (School of Korean Medicine, Pusan National University)
  • 투고 : 2022.09.29
  • 심사 : 2022.12.21
  • 발행 : 2022.12.25

초록

Lung cancer is the leading cause of cancer-related deaths worldwide. Indigo Naturalis (IN) is a dark blue powder obtained by processing leaves or stems of indigo plants, its anticancer effects have been reported in several studies. However, the pharmacological mechanism of IN in small cell lung cancer (SCLC) is not elucidated. In this study, to investigate the anticancer efficacy of IN for SCLC, we presented potential active ingredients, SCLC-related targets, and pharmacological mechanisms of IN that are expected to have anticancer activity for SCLC using a network pharmacological analysis. The phytochemical compounds of IN have been collected through TCMSP, SymMap, or HPLC documents. The active ingredients of IN such as indirubin, indican, isatin, and tryptanthrin were selected through ADME parameters or literature investigations for each compound. Using the Compounds, Disease-Target associations Databases, 124 common targets of IN and SCLC were obtained. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway enrichment analysis was carried out. GO biological processes are associated with response to xenobiotic stimulus, positive regulation of protein phosphorylation, regulation of mitotic cell cycle, and regulation of apoptotic signaling pathway. KEGG disease pathways included Gastric cancer, Bladder cancer, SCLC, and Melanoma. The main anticancer targets of the IN for SCLC were analyzed in 14 targets, including BCL2, MYC, and TP53. In conclusion, the results of this study based on the network pharmacology of IN can provide important data for the effective prevention and treatment of SCLC.

키워드

과제정보

본 연구는 부산대학교 기본연구지원사업(2년)의 지원을 받아 수행되었음.

참고문헌

  1. International Agency for Research on Cancer. Global Cancer Observatory: Cancer Today. Available from: https://gco.iarc.fr/today/fact-sheets-cancers [Accessed 28th September 2022].
  2. Byers LA, Rudin CM. Small cell lung cancer: where do we go from here? Cancer. 2015;121(5):664-72. https://doi.org/10.1002/cncr.29098
  3. Herzog BH, Devarakonda S, Govindan R. Overcoming Chemotherapy Resistance in SCLC. J Thorac Oncol. 2021;16(12):2002-15. https://doi.org/10.1016/j.jtho.2021.07.018
  4. Rudin CM, Brambilla E, Faivre-Finn C, Sage J. Small-cell lung cancer. Nat Rev Dis Primers. 2021;7(1):1-20. https://doi.org/10.1038/s41572-020-00234-1
  5. Minami T, Kijima T, Kohmo S, Arase H, Otani Y, Nagatomo I, et al. Overcoming chemoresistance of small-cell lung cancer through stepwise HER2-targeted antibody-dependent cell-mediated cytotoxicity and VEGF-targeted antiangiogenesis. Sci Rep. 2013;3:2669:1-11.
  6. Quaresma M, Coleman MP, Rachet B. 40-year trends in an index of survival for all cancers combined and survival adjusted for age and sex for each cancer in England and Wales, 1971-2011: a population-based study. Lancet. 2015;385(9974):1206-18. https://doi.org/10.1016/S0140-6736(14)61396-9
  7. Karachaliou N, Pilotto S, Lazzari C, Bria E, de Marinis F, Rosell R. Cellular and molecular biology of small cell lung cancer: an overview. Transl Lung Cancer Res. 2016;5(1):2-15.
  8. Cancer.Net Editorial Board. Lung cancer - small cell - statistics. Available from: https://www.cancer.net/cancer-types/lung-cancer-small-cell/statistics [Accessed 28th September 2022].
  9. Pezzani R, Salehi B, Vitalini S, Iriti M, Zuniga FA, Sharifi-Rad J, et al. Synergistic Effects of Plant Derivatives and Conventional Chemotherapeutic Agents: An Update on the Cancer Perspective. Medicina (Kaunas). 2019;55(4):1-16.
  10. Castaneda AM, Melendez CM, Uribe D, Pedroza-Diaz J. Synergistic effects of natural compounds and conventional chemotherapeutic agents: recent insights for the development of cancer treatment strategies. Heliyon. 2022;8(6):e09519.
  11. Liu Z, Ma L, Zhou GB. The main anticancer bullets of the Chinese medicinal herb, thunder god vine. Molecules. 2011;16(6):5283-97. https://doi.org/10.3390/molecules16065283
  12. Tan W, Lu J, Huang M, Li Y, Chen M, Wu G, et al. Anti-cancer natural products isolated from chinese medicinal herbs. Chin Med. 2011;6(1):27:1-15. https://doi.org/10.1186/1749-8546-6-1
  13. Stasiak N, Kukula-Koch W, Glowniak K. Modern industrial and pharmacological applications of indigo dye and its derivatives-a review. Acta Pol Pharm. 2014;71(2):215-21.
  14. State Pharmacopoeia Commission of the PRC. Pharmacopoeia of the People's Republic of China. China: People's Medical Publishing House; 2005.
  15. Tang W., Eisenbrand G. Chinese Drugs of Plant Origin: Chemistry, Pharmacology, and Use in Traditional and Modern Medicine. Berlin: Springer-Verlag; 1992.
  16. Han J. Traditional Chinese medicine and the search for new antineoplastic drugs. J Ethnopharmacol. 1988;24(1):1-17. https://doi.org/10.1016/0378-8741(88)90135-3
  17. Yang MH, Wan WQ, Luo JS, Zheng MC, Huang K, Yang LH, et al. Multicenter randomized trial of arsenic trioxide and Realgar-Indigo naturalis formula in pediatric patients with acute promyelocytic leukemia: Interim results of the SCCLG-APL clinical study. Am J Hematol. 2018;93(12):1467-73. https://doi.org/10.1002/ajh.25271
  18. Liau BC, Jong TT, Lee MR, Chen SS. LC-APCI-MS method for detection and analysis of tryptanthrin, indigo, and indirubin in daqingye and banlangen. J Pharm Biomed Anal. 2007;43(1):346-51. https://doi.org/10.1016/j.jpba.2006.06.029
  19. Cao Z, Yang F, Wang J, Gu Z, Lin S, Wang P, et al. Indirubin Derivatives as Dual Inhibitors Targeting Cyclin-Dependent Kinase and Histone Deacetylase for Treating Cancer. J Med Chem. 2021;64(20):15280-96. https://doi.org/10.1021/acs.jmedchem.1c01311
  20. Nam S, Buettner R, Turkson J, Kim D, Cheng JQ, Muehlbeyer S, et al. Indirubin derivatives inhibit Stat3 signaling and induce apoptosis in human cancer cells. Proc Natl Acad Sci U S A. 2005;102(17):5998-6003. https://doi.org/10.1073/pnas.0409467102
  21. Wang H, Wang Z, Wei C, Wang J, Xu Y, Bai G, et al. Anticancer potential of indirubins in medicinal chemistry: Biological activity, structural modification, and structure-activity relationship. Eur J Med Chem. 2021;223:113652:1-30.
  22. Hsieh WL, Lin YK, Tsai CN, Wang TM, Chen TY, Pang JH. Indirubin, an acting component of indigo naturalis, inhibits EGFR activation and EGF-induced CDC25B gene expression in epidermal keratinocytes. J Dermatol Sci. 2012;67(2):140-6. https://doi.org/10.1016/j.jdermsci.2012.05.008
  23. Gao W, Guo Y, Wang C, Lin Y, Yu L, Sheng T, et al. Indirubin ameliorates dextran sulfate sodium-induced ulcerative colitis in mice through the inhibition of inflammation and the induction of Foxp3-expressing regulatory T cells. Acta Histochem. 2016;118(6):606-14. https://doi.org/10.1016/j.acthis.2016.06.004
  24. Lin YK, Chang SH, Yang CY, See LC, Lee BH, Shih IH. Efficacy and safety of indigo naturalis ointment in Treating Atopic Dermatitis: A randomized clinical trial. J Ethnopharmacol. 2020;250:112477:1-8.
  25. Kaur R, Manjal SK, Rawal RK, Kumar K. Recent synthetic and medicinal perspectives of tryptanthrin. Bioorg Med Chem. 2017;25(17):4533-52. https://doi.org/10.1016/j.bmc.2017.07.003
  26. Chiang YR, Li A, Leu YL, Fang JY, Lin YK. An in vitro study of the antimicrobial effects of indigo naturalis prepared from Strobilanthes formosanus Moore. Molecules. 2013;18(11):14381-96. https://doi.org/10.3390/molecules181114381
  27. Ru J, Li P, Wang J, Zhou W, Li B, Huang C, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform. 2014;6:13:1-6. https://doi.org/10.1186/1758-2946-6-1
  28. Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7:42717:1-13.
  29. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10(1):1523:1-10. https://doi.org/10.1038/s41467-018-07882-8
  30. Liu SG, Luo GP, Qu YB, Chen YF. Indirubin inhibits Wnt/beta-catenin signal pathway via promoter demethylation of WIF-1. BMC Complement Med Ther. 2020;20(1):250:1-10. https://doi.org/10.1186/s12906-019-2780-5
  31. Hoessel R, Leclerc S, Endicott JA, Nobel ME, Lawrie A, Tunnah P, et al. Indirubin, the active constituent of a Chinese antileukaemia medicine, inhibits cyclin-dependent kinases. Nat Cell Biol. 1999;1(1):60-7. https://doi.org/10.1038/9035
  32. Premanathan M, Radhakrishnan S, Kulangiappar K, Singaravelu G, Thirumalaiarasu V, Sivakumar T, et al. Antioxidant & anticancer activities of isatin (1H-indole-2,3-dione), isolated from the flowers of Couroupita guianensis Aubl. Indian J Med Res. 2012;136(5):822-6.
  33. Chen DL, Zhou D, Chu W, Herrbrich P, Engle JT, Griffin E, et al. Radiolabeled isatin binding to caspase-3 activation induced by anti-Fas antibody. Nucl Med Biol. 2012;39(1):137-44. https://doi.org/10.1016/j.nucmedbio.2011.08.001
  34. Ferraz de Paiva RE, Vieira EG, Rodrigues da Silva D, Wegermann CA, Costa Ferreira AM. Anticancer Compounds Based on Isatin-Derivatives: Strategies to Ameliorate Selectivity and Efficiency. Front Mol Biosci. 2020;7:627272:1-24. https://doi.org/10.3389/fmolb.2020.00001
  35. Jahng Y. Progress in the studies on tryptanthrin, an alkaloid of history. Arch Pharm Res. 2013;36(5):517-35. https://doi.org/10.1007/s12272-013-0091-9
  36. Yuan M, Zhao Y, Arkenau HT, Lao T, Chu L, Xu Q. Signal pathways and precision therapy of small-cell lung cancer. Signal Transduct Target Ther. 2022;7(1):187:1-18. https://doi.org/10.1038/s41392-021-00710-4
  37. Tsujimoto Y, Finger LR, Yunis J, Nowell PC, Croce CM. Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science. 1984;226(4678):1097-9. https://doi.org/10.1126/science.6093263
  38. Wang C, Zhang J, Yin J, Gan Y, Xu S, Gu Y, et al. Alternative approaches to target Myc for cancer treatment. Signal Transduct Target Ther. 2021;6(1):117:1-14. https://doi.org/10.1038/s41392-020-00451-w
  39. Baugh EH, Ke H, Levine AJ, Bonneau RA, Chan CS. Why are there hotspot mutations in the TP53 gene in human cancers? Cell Death Differ. 2018;25(1):154-60. https://doi.org/10.1038/cdd.2017.180
  40. George J, Lim JS, Jang SJ, Cun Y, Ozretic L, Kong G, et al. Comprehensive genomic profiles of small cell lung cancer. Nature. 2015;524(7563):47-53. https://doi.org/10.1038/nature14664
  41. el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, et al. WAF1, a potential mediator of p53 tumor suppression. Cell. 1993;75(4):817-25. https://doi.org/10.1016/0092-8674(93)90500-p
  42. Karimian A, Ahmadi Y, Yousefi B. Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage. DNA Repair (Amst). 2016;42:63-71. https://doi.org/10.1016/j.dnarep.2016.04.008
  43. Peng H, Yuan X, Shi R, Wei X, Ren S, Yan C, et al. PHII-7 inhibits cell growth and induces apoptosis in leukemia cell line K562 as well as its MDR- counterpart K562/A02 through producing reactive oxygen species. Eur J Pharmacol. 2013;718(1-3):459-68. https://doi.org/10.1016/j.ejphar.2013.07.038