DOI QR코드

DOI QR Code

Effects of red ginseng oil(KGC11ℴ) on testosterone-propionate-induced benign prostatic hyperplasia

  • Lee, Jeong Yoon (Department of Food Science and Nutrition, The University of Suwon) ;
  • Kim, Sohyuk (Department of Food Science and Nutrition, The University of Suwon) ;
  • Kim, Seokho (Department of Food Science and Nutrition, The University of Suwon) ;
  • Kim, Jong Han (Laboratory of Efficacy Research, Korea Ginseng Corporation) ;
  • Bae, Bong Seok (Laboratory of Resource and Analysis, Korea Ginseng Corporation) ;
  • Koo, Gi-Bang (Laboratory of Efficacy Research, Korea Ginseng Corporation) ;
  • So, Seung-Ho (Laboratory of Efficacy Research, Korea Ginseng Corporation) ;
  • Lee, Jeongmin (Department of Medical Nutrition, Kyung Hee University) ;
  • Lee, Yoo-Hyun (Department of Food Science and Nutrition, The University of Suwon)
  • Received : 2021.07.22
  • Accepted : 2021.11.10
  • Published : 2022.05.01

Abstract

Background: Benign prostatic hyperplasia (BPH) is a disease characterized by abnormal proliferation of the prostate, which occurs frequently in middle-aged men. In this study, we report the effect of red ginseng oil (KGC11o) on BPH. Methods: The BPH-induced Sprague-Dawley rats were divided into seven groups: control, BPH, KGC11o 25, 50, 100, 200, and finasteride groups. KGC11o and finasteride were administered for 8 weeks. The BPH biomarkers, DHT, 5AR1, and 5AR2, androgen receptor, prostate-specific antigen (PSA), Bax, Bcl-2, and TGF-β were determined in the serum and prostate tissue. The cell viability after KGC11o treatment was determined using BPH-1 cells, and, androgen receptor, Bax, Bcl-2, and TGF-β were confirmed by western blotting. Results: In the in vivo study, administration of KGC11o reduced prostate weight by 18%, suppressed DHT (up to 22%) and 5AR2 (up to 12%) levels from administration of 100 mg/kg KGC11o (P < 0.05). PSA was significantly downregulated dose-dependently from at the concentration of 50 mg/kg KGC11o (P < 0.05). BPH-1 cell viability significantly reduced through the treatment with KGC11o. In vitro and vivo, AR, Bcl-2 TGF-β levels reduced significantly but Bax was increased (P < 0.05). Conclusion: These results suggest that KGC11o may inhibit the development of BPH by significantly reducing the levels of BPH biomarkers via 5ARI, anti-androgenic effect, and anti-proliferation effect, serving as a potential functional food for treating BPH.

Keywords

Acknowledgement

This work was supported by grants from the Korean Society of Ginseng.

References

  1. Verze P, Cai T, Lorenzetti S. The role of the prostate in male fertility, health and disease. Nat Rev Urol [Internet] 2016;13(7):379-86. https://doi.org/10.1038/nrurol.2016.89. Available from:.
  2. McNeal J. Pathology of benign prostatic hyperplasia. Insight into etiology. Urol Clin North Am [Internet 1990;17(3):477d486. Available from: http://europepmc.org/abstract/MED/1695776.
  3. Litwin MS, Saigal CS, Yano EM, Avila C, Geschwind SA, Hanley JM, et al. Urologic diseases in America project: analytical methods and principal findings. J Urol 2005;173(3):933-7. https://doi.org/10.1097/01.ju.0000152365.43125.3b
  4. McVary KT. BPH: epidemiology and comorbidities. Am J Manag Care 2006;12(SUPPL. 5):122-8.
  5. Calais da Silva F, Marquis P, Deschaseaux P, Gineste JL, Cauquil J, Patrick DL. Relative importance of sexuality and quality of life in patients with prostatic symptoms. Results of an international study. Eur Urol [Internet 1997;31(3): 272-80. Available from: https://www.karger.com/DOI/10.1159/000474467.
  6. Chen JL, Jiang YH, Lee CL, Kuo HC. Precision medicine in the diagnosis and treatment of male lower urinary tract symptoms suggestive of benign prostatic hyperplasia, vol. 32. Tzu Chi Medical Journal; 2020. p. 5-13. https://doi.org/10.4103/tcmj.tcmj_107_19
  7. Vignozzi L, Rastrelli G, Corona G, Gacci M, Forti G, Maggi M. Benign prostatic hyperplasia: a new metabolic disease? J Endocrinol Invest [Internet] 2014;37(4): 313-22. https://doi.org/10.1007/s40618-014-0051-3. Available from:.
  8. La Vignera S, Condorelli RA, Russo GI, Morgia G, Calogero AE. Endocrine control of benign prostatic hyperplasia. Andrology 2016;4(3):404-11. https://doi.org/10.1111/andr.12186
  9. Carson C, Rittmaster R. The role of dihydrotestosterone in benign prostatic hyperplasia. Urology 2003;61(4 SUPPL. 1):2-7. https://doi.org/10.1016/S0090-4295(03)00045-1
  10. Kim IY, Zelner DJ, Sensibar JA, Ahn HJ, Park L, Kim JH, et al. Modulation of sensitivity to transforming growth factor-β1 (TGF-β1) and the level of type II TGF-b receptor in LNCaP cells by dihydrotestosterone. Exp Cell Res 1996;222(1):103-10. https://doi.org/10.1006/excr.1996.0013
  11. Harman SM, Metter EJ, Tobin JD, Pearson J, Blackman MR. Longitudinal effects of aging on serum total and free testosterone levels in healthy men. J Clin Endocrinol Metab 2001;86(2):724-31. https://doi.org/10.1210/jc.86.2.724
  12. Webber R. Therapeutic treatment for benign prostatic hyperplasia. BJU Int 2007;99(3):697. 697. https://doi.org/10.1111/j.1464-410X.2007.06786.x
  13. Mysore V. Finasteride and sexual side effects [Internet] Indian Dermatol Online J 2012 Jan;3(1):62. Available from: https://pubmed.ncbi.nlm.nih.gov/23130269. https://doi.org/10.4103/2229-5178.93496
  14. Kirby RS. Terazosin in benign prostatic hyperplasia: effects on blood pressure in normotensive and hypertensive men. Br J Urol [Internet] 1998;82(3):373-9. https://doi.org/10.1046/j.1464-410x.1998.00747.x. Available from:.
  15. Reyes AWB, Hop HT, Arayan LT, Huy TXN, Park SJ, Kim KD, et al. The host immune enhancing agent Korean red ginseng oil successfully attenuates Brucella abortus infection in a murine model. J Ethnopharmacol [Internet] 2017;198(May 2016):5-14. https://doi.org/10.1016/j.jep.2016.12.026. Available from:.
  16. Bak MJ, Jun M, Jeong WS. Antioxidant and hepatoprotective effects of the red ginseng essential oil in H 2O 2-treated HepG2 cells and CCL 4-treated mice. Int J Mol Sci 2012;13(2):2314-30. https://doi.org/10.3390/ijms13022314
  17. Rho J, Seo CS, Park HS, Wijerathne CU, Jeong HY, Moon OS, et al. Ulmus macrocarpa Hance improves benign prostatic hyperplasia by regulating prostatic cell apoptosis. J Ethnopharmacol [Internet] 2019;233(November 2018):115-22. https://doi.org/10.1016/j.jep.2018.11.042. Available from:.
  18. Schmidt LJ, Tindall DJ. Steroid 5 a-reductase inhibitors targeting BPH and prostate cancer. J Steroid Biochem Mol Biol [Internet] 2011;125(1-2):32-8. https://doi.org/10.1016/j.jsbmb.2010.09.003. Available from:.
  19. Kim SR, Ha AW, Choi HJ, Kim SL, Kang HJ, Kim MH, et al. Corn silk extract improves benign prostatic hyperplasia in experimental rat model. Nutr Res Pract 2017;11(5):373-80. https://doi.org/10.4162/nrp.2017.11.5.373
  20. Vickman RE, Franco OE, Moline DC, Vander Griend DJ, Thumbikat P, Hayward SW. The role of the androgen receptor in prostate development and benign prostatic hyperplasia: a review. Asian J Urol 2020 Jul;7(3):191-202. https://doi.org/10.1016/j.ajur.2019.10.003
  21. Park J, Youn DH, Um JY. Aconiti Lateralis radix preparata, the dried root of Aconitum carmichaelii Debx., improves benign prostatic hyperplasia via suppressing 5-alpha reductase and inducing prostate cell apoptosis. Evid Based Complement Alternat Med 2019 Jul 31;2019:6369132.
  22. Liu J, Fang T, Li M, Song Y, Li J, Xue Z, et al. Pao Pereira extract attenuates testosterone-induced benign prostatic hyperplasia in rats by inhibiting 5α-reductase. Sci Rep 2019;9(1):1-10. https://doi.org/10.1038/s41598-018-37186-2
  23. Wijerathne CUB, Park HS, Jeong HY, Song JW, Moon OS, Seo YW, et al. Quisqualis indica improves benign prostatic hyperplasia by regulating prostate cell proliferation and apoptosis. Biol Pharm Bull 2017;40(12):2125-33. https://doi.org/10.1248/bpb.b17-00468
  24. Li C, Hu WL, Lu MX, Xiao GF. Resveratrol induces apoptosis of benign prostatic hyperplasia epithelial cell line (BPH-1) through p38 MAPK-FOXO3a pathway. BMC Compl Alternative Med 2019;19(1):1-7. https://doi.org/10.1186/s12906-018-2420-5
  25. Bae J-S, Park H-S, Park J-W, Li S-H, Chun Y-S. Red ginseng and 20(S)-Rg3 control testosterone-induced prostate hyperplasia by deregulating androgen receptor signaling. J Nat Med [Internet] 2012;66(3):476-85. https://doi.org/10.1007/s11418-011-0609-8. Available from:.
  26. Bak MJ, Kim KB, Jun M, Jeong WS. Safety of red ginseng oil for single oral administration in Spraguee-Dawley rats. J Ginseng Res [Internet] 2014;38(1): 78-81. https://doi.org/10.1016/j.jgr.2013.11.009. Available from:.
  27. Wilt TJ, Ishani A, MacDonald R, Stark G, Mulrow CD, Lau J. Beta-sitosterols for benign prostatic hyperplasia. Cochrane Database Syst Rev [Internet; 1999. https://doi.org/10.1002/14651858.CD001043 (3). Available from:.
  28. Lin GG, Scott JG. Androgen receptor and growth factor signaling cross-talk in prostate cancer cells. Endocr Relat Cancer 2012;100(2):130-4.
  29. Jung Y, Park J, Kim HL, Youn DH, Kang JW, Lim S, et al. Vanillic acid attenuates testosterone-induced benign prostatic hyperplasia in rats and inhibits proliferation of prostatic epithelial cells. Oncotarget 2017;8(50):87194-208. https://doi.org/10.18632/oncotarget.19909
  30. Ratliff TL. Pomegranate fruit juice for chemoprevention and chemotherapy of prostate cancer: Commentary. J Urol 2006;175(3):1171.
  31. Kim HJ, Jin BR, An HJ. Psoralea corylifolia L. extract ameliorates benign prostatic hyperplasia by regulating prostate cell proliferation and apoptosis. J Ethnopharmacol 2021 Jun 12;273:113844. https://doi.org/10.1016/j.jep.2021.113844. Epub 2021 Jan 21.
  32. Heinlein CA, Chang C. The roles of androgen receptors and androgen-binding proteins in nongenomic androgen actions. Mol Endocrinol 2002;16(10):2181-7. https://doi.org/10.1210/me.2002-0070
  33. Carvalho-Dias E, Miranda A, Martinho O, Mota P, Costa A, Nogueira-Silva C, et al. Serotonin regulates prostate growth through androgen receptor modulation. Sci Rep 2017;7(1):1-11. https://doi.org/10.1038/s41598-016-0028-x
  34. El-mehi AE, El-Sharif NM. Modulating role of Panax Ginseng in experimentally induced benign prostatic hyperplasia in adult male albino rats (1) Austin J Anat [Internet 2015;2(1):1031. Available from: https://www.researchgate.net/profile/Neveen_Shereef/publication/274249502_Austin_Journal_of_Anatomy/links/55194db40cf2d241f3562ae8.pdf.
  35. Park HK, Kim SK, Lee SW, Chung JH, Lee BC, Na SW, et al. A herbal formula, comprising Panax ginseng and bee-pollen, inhibits development of testosterone-induced benign prostatic hyperplasia in male Wistar rats. Saudi J Biol Sci [Internet] 2017;24(7):1555-61. https://doi.org/10.1016/j.sjbs.2015.10.020. Available from:.
  36. Kim Y, Lee D, Jo H, Go C, Yang J, Kang D, Kang JS. GV1001 interacts with androgen receptor to inhibit prostate cell proliferation in benign prostatic hyperplasia by regulating expression of molecules related to epithelial-mesenchymal transition. Aging (Albany NY) 2021 Feb 4;13(3):3202-17. https://doi.org/10.18632/aging.202242. Epub 2021 Feb 4.PMID: 33539321.
  37. Abdel-Aziz AM, Gamal El-Tahawy NF, Salah Abdel Haleem MA, Mohammed MM, Ali AI, Ibrahim YF. Amelioration of testosterone-induced benign prostatic hyperplasia using febuxostat in rats: the role of VEGF/TGFbeta and iNOS/COX-2. Eur J Pharmacol 2020 Dec 15;889:173631. https://doi.org/10.1016/j.ejphar.2020.173631. Epub 2020 Oct 5.PMID: 33031799.
  38. Li F, Pascal LE, Wang K, Zhou Y, Balasubramani GK, O'Malley KJ, Dhir R, He K, Stolz D, DeFranco DB, Yoshimura N, Nelson JB, Chong T, Guo P, He D, Wang Z. Transforming growth factor beta 1 impairs benign prostatic luminal epithelial cell monolayer barrier function. Am J Clin Exp Urol 2020 Feb 25;8(1):9-17. eCollection 2020.PMID: 32211449.