DOI QR코드

DOI QR Code

Effect of Lactobacillus dominance modified by Korean Red Ginseng on the improvement of Alzheimer's disease in mice

  • Lee, Mijung (Department of Neurology, Biomedical Research Institute, Seoul National University Hospital) ;
  • Lee, So-Hee (Department of Neurology, Biomedical Research Institute, Seoul National University Hospital) ;
  • Kim, Min-Soo (Functional Genome Institute, PDXen. Biosystem Co.) ;
  • Ahn, Kwang-Sung (Functional Genome Institute, PDXen. Biosystem Co.) ;
  • Kim, Manho (Department of Neurology, Biomedical Research Institute, Seoul National University Hospital)
  • Received : 2021.05.09
  • Accepted : 2021.11.04
  • Published : 2022.05.01

Abstract

Background: Gut microbiota influence the central nervous system through gut-brain-axis. They also affect the neurological disorders. Gut microbiota differs in patients with Alzheimer's disease (AD), as a potential factor that leads to progression of AD. Oral intake of Korean Red Ginseng (KRG) improves the cognitive functions. Therefore, it can be proposed that KRG affect the microbiota on the gut-brain-axis to the brain. Methods: Tg2576 were used for the experimental model of AD. They were divided into four groups: wild type (n = 6), AD mice (n = 6), AD mice with 30 mg/kg/day (n = 6) or 100 mg/kg/day (n = 6) of KRG. Following two weeks, changes in gut microbiota were analyzed by Illumina HiSeq4000 platform 16S gene sequencing. Microglial activation were evaluated by quantitative Western blot analyses of Iba-1 protein. Claudin-5, occludin, laminin and CD13 assay were conducted for Blood-brain barrier (BBB) integrity. Amyloid beta (Aβ) accumulation demonstrated through Aβ 42/40 ratio was accessed by ELISA, and cognition were monitored by Novel object location test. Results: KRG improved the cognitive behavior of mice (30 mg/kg/day p < 0.05; 100 mg/kg/day p < 0.01), and decreased Aβ 42/40 ratio (p < 0.01) indicating reduced Aβ accumulation. Increased Iba-1 (p < 0.001) for reduced microglial activation, and upregulation of Claudin-5 (p < 0.05) for decreased BBB permeability were shown. In particular, diversity of gut microbiota was altered (30 mg/kg/day q-value<0.05), showing increased population of Lactobacillus species. (30 mg/kg/day 411%; 100 mg/kg/day 1040%). Conclusions: KRG administration showed the Lactobacillus dominance in the gut microbiota. Improvement of AD pathology by KRG can be medicated through gut-brain axis in mice model of AD.

Keywords

Acknowledgement

This work was supported by 2019 grant from The Korean Society of Ginseng.

References

  1. Burns A, Iliffe S. Alzheimer's disease. BMJ 2009;338:b158. https://doi.org/10.1136/bmj.b158
  2. Li N, Liu Y, Li W, Zhou L, Li Q, Wang X, He P. A UPLC/MS-based metabolomics investigation of the protective effect of ginsenosides Rg1 and Rg2 in mice with Alzheimer's disease. J Ginseng Res. 2016;40:9-17. https://doi.org/10.1016/j.jgr.2015.04.006
  3. Zadori D, Veres G, Szalardy L, Klivenyi P, Vecsei L. Alzheimer's disease: recent concepts on the relation of mitochondrial disturbances, excitotoxicity, neuroinflammation, and Kynurenines. J Alzheimers Dis 2018;62:523-47. https://doi.org/10.3233/JAD-170929
  4. Association As. 2018 Alzheimer's disease facts and figures. Alzheimer's Dementia 2018;14:367-429. https://doi.org/10.1016/j.jalz.2018.02.001
  5. Hu Z, Wang L, Ma S, Kirisci L, Feng Z, Xue Y, Klunk WE, Kamboh MI, Sweet RA, Becker J, et al. Synergism of antihypertensives and cholinesterase inhibitors in Alzheimer's disease. Alzheimer's Dementia: Translational Research & Clinical Interventions 2018;4:542-55. https://doi.org/10.1016/j.trci.2018.09.001
  6. Kwan KKL, Yun H, Dong TTX, Tsim KWK. Ginsenosides attenuate bioenergetics and morphology of mitochondria in cultured PC12 cells under the insult of amyloid beta-peptide. J Ginseng Res 2020;45:473-81.
  7. Bagyinszky E, Giau VV, Shim K, Suk K, An SSA, Kim S. Role of inflammatory molecules in the Alzheimer's disease progression and diagnosis. J Neurol Sci 2017;376:242-54. https://doi.org/10.1016/j.jns.2017.03.031
  8. Hroudova J, Singh N, Fisar Z. Mitochondrial dysfunctions in neurodegenerative diseases: relevance to Alzheimer's disease. BioMed Res Int 2014;2014:175062. https://doi.org/10.1155/2014/175062
  9. Manoharan S, Guillemin GJ, Abiramasundari RS, Essa MM, Akbar M, Akbar MD. The role of reactive oxygen species in the pathogenesis of Alzheimer's disease, Parkinson's disease, and Huntington's disease: a mini review. Oxidative Med Cell Longev 2016;2016:8590578. https://doi.org/10.1155/2016/8590578
  10. Zadori D, Veres G, Szalardy L, Klivenyi P, Toldi J, Vecsei L. Glutamatergic dysfunctioning in Alzheimer's disease and related therapeutic targets. J Alzheimers Dis 2014;42(Suppl 3):S177-87. https://doi.org/10.3233/JAD-132621
  11. Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE, Challis C, Schretter CE, Rocha S, Gradinaru V, et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson's disease. Cell 2016;167:1469-80. e12. https://doi.org/10.1016/j.cell.2016.11.018
  12. He Y, Kosciolek T, Tang J, Zhou Y, Li Z, Ma X, Zhu Q, Yuan N, Yuan L, Li C, et al. Gut microbiome and magnetic resonance spectroscopy study of subjects at ultra-high risk for psychosis may support the membrane hypothesis. Eur Psychiatr 2018;53:37-45. https://doi.org/10.1016/j.eurpsy.2018.05.011
  13. Gulden E, Chao C, Tai N, Pearson JA, Peng J, Majewska-Szczepanik M, Zhou Z, Wong FS, Wen L. TRIF deficiency protects non-obese diabetic mice from type 1 diabetes by modulating the gut microbiota and dendritic cells. J Autoimmun 2018;93:57-65. https://doi.org/10.1016/j.jaut.2018.06.003
  14. Li YY, Pearson JA, Chao C, Peng J, Zhang X, Zhou Z, Liu Y, Wong FS, Wen L. Nucleotide-binding oligomerization domain-containing protein 2 (Nod 2) modulates T1DM susceptibility by gut microbiota. J Autoimmun 2017;82:85-95. https://doi.org/10.1016/j.jaut.2017.05.007
  15. Li J, Zhao F, Wang Y, Chen J, Tao J, Tian G, Wu S, Liu W, Cui Q, Geng B, et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome 2017;5:14. https://doi.org/10.1186/s40168-016-0222-x
  16. Peng J, Xiao X, Hu M, Zhang X. Interaction between gut microbiome and cardiovascular disease. Life Sci 2018;214:153-7. https://doi.org/10.1016/j.lfs.2018.10.063
  17. Ye Z, Zhang N, Wu C, Zhang X, Wang Q, Huang X, Du L, Cao Q, Tang J, Zhou C, et al. A metagenomic study of the gut microbiome in Behcet's disease. Microbiome 2018;6:135. https://doi.org/10.1186/s40168-018-0520-6
  18. Jiang C, Li G, Huang P, Liu Z, Zhao B. The gut microbiota and Alzheimer's disease. J Alzheimers Dis 2017;58:1-15. https://doi.org/10.3233/JAD-161141
  19. Sochocka M, Donskow-Lysoniewska K, Diniz BS, Kurpas D, Brzozowska E, Leszek J. The gut microbiome alterations and inflammation-driven pathogenesis of Alzheimer's disease-a critical review. Mol Neurobiol 2019;56:1841-51. https://doi.org/10.1007/s12035-018-1188-4
  20. Braniste V, Al-Asmakh M, Kowal C, Anuar F, Abbaspour A, Toth M, Korecka A, Bakocevic N, Ng LG, Kundu P, et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med 2014;6. 263ra158. https://doi.org/10.1126/scitranslmed.3009759
  21. Rybnikova E. Brain, antibiotics, and microbiota - how do they interplay? J Neurochem 2018;146:208-10. https://doi.org/10.1111/jnc.14341
  22. Kim J-H. Pharmacological and medical applications of Panax ginseng and ginsenosides: a review for use in cardiovascular diseases. J Ginseng Res 2018;42:264-9. https://doi.org/10.1016/j.jgr.2017.10.004
  23. Kim KH, Lee D, Lee HL, Kim C-E, Jung K, Kang KS. Beneficial effects of Panax ginseng for the treatment and prevention of neurodegenerative diseases: past findings and future directions. J Ginseng Res 2018;42:239-47. https://doi.org/10.1016/j.jgr.2017.03.011
  24. Fang F, Chen X, Huang T, Lue LF, Luddy JS, Yan SS. Multi-faced neuroprotective effects of Ginsenoside Rg1 in an Alzheimer mouse model. Biochim Biophys Acta 2012;1822:286-92. https://doi.org/10.1016/j.bbadis.2011.10.004
  25. Xie X, Wang HT, Li CL, Gao XH, Ding JL, Zhao HH, Lu YL. Ginsenoside Rb1 protects PC12 cells against β-amyloid-induced cell injury. Mol Med Rep 2010;3:635-9. https://doi.org/10.3892/mmr_00000308
  26. Wu J, Yang H, Zhao Q, Zhang X, Lou Y. Ginsenoside Rg1 exerts a protective effect against Aβ25-35-induced toxicity in primary cultured rat cortical neurons through the NF-κB/NO pathway. Int J Mol Med 2016;37:781-8. https://doi.org/10.3892/ijmm.2016.2485
  27. Kim HJ, Jung SW, Kim SY, Cho IH, Kim HC, Rhim H, Kim M, Nah SY. Panax ginseng as an adjuvant treatment for Alzheimer's disease. J Ginseng Res. 2018;42:401-11. https://doi.org/10.1016/j.jgr.2017.12.008
  28. Wan Y, Wang J, J-f Xu, Tang F, Chen L, Tan Y-z, et al. Panax ginseng and its ginsenosides: potential candidates for the prevention and treatment of chemotherapy-induced side effects. J Ginseng Res 2021;45:617-30. https://doi.org/10.1016/j.jgr.2021.03.001
  29. Wang N, Wang X, He M, Zheng W, Qi D, Zhang Y. Han C-c. Ginseng polysaccharides: a potential neuroprotective agent. J Ginseng Res 2020;45:211-7.
  30. Im K, Kim J, Min H. Ginseng, the natural effectual antiviral: protective effects of Korean Red Ginseng against viral infection. J Ginseng Res 2016;40:309-14. https://doi.org/10.1016/j.jgr.2015.09.002
  31. Kim D, Kwon S, Jeon H, Ryu S, Ha KT, Kim S. Proteomic change by Korean Red Ginseng in the substantia nigra of a Parkinson's disease mouse model. J Ginseng Res. 2018;42:429-35. https://doi.org/10.1016/j.jgr.2017.04.008
  32. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 2010;7:335-6. https://doi.org/10.1038/nmeth.f.303
  33. Dhariwal A, Chong J, Habib S, King IL, Agellon LB, Xia J. Microbiome Analyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res 2017;45. W180-w8. https://doi.org/10.1093/nar/gkx295
  34. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 2006;72:5069-72. https://doi.org/10.1128/AEM.03006-05
  35. Kohler CA, Maes M, Slyepchenko A, Berk M, Solmi M, Lanctot KL, Carvalho AF. ^ The gut-brain Axis, including the microbiome, leaky gut and bacterial translocation: mechanisms and pathophysiological role in Alzheimer's disease. Curr Pharmaceut Des 2016;22:6152-66. https://doi.org/10.2174/1381612822666160907093807
  36. Abdel-Haq R, Schlachetzki JCM, Glass CK, Mazmanian SK. Microbiome-microglia connections via the gut-brain axis. J Exp Med 2018;216:41-59. https://doi.org/10.1084/jem.20180794
  37. Tang W, Zhu H, Feng Y, Guo R, Wan D. The impact of gut microbiota disorders on the blood-brain barrier. Infect Drug Resist 2020;13:3351-63. https://doi.org/10.2147/IDR.S254403
  38. Zhu S, Jiang Y, Xu K, Cui M, Ye W, Zhao G, Jin L, Chen X. The progress of gut microbiome research related to brain disorders. J Neuroinflammation 2020;17:25. https://doi.org/10.1186/s12974-020-1705-z
  39. Bonfili L, Cecarini V, Gogoi O, Gong C, Cuccioloni M, Angeletti M, et al. Microbiota modulation as preventative and therapeutic approach in Alzheimer's disease. FEBS J 2020;288:2836-55 [n/a].
  40. Kowalski K, Mulak A. Brain-gut-microbiota Axis in Alzheimer's disease. J Neurogastroenterol Motil 2019;25:48-60. https://doi.org/10.5056/jnm18087
  41. Braniste V, Al-Asmakh M, Kowal C, Anuar F, Abbaspour A, Toth M, Korecka A, Bakocevic N, Ng LG, Kundu P, et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med 2014;6. 263ra158. https://doi.org/10.1126/scitranslmed.3009759
  42. Takeshita Y, Fujikawa S, Omoto M, Shimizu F, Maeda T, Sano Y, Kanda T. The effect of blood-brain barrier (BBB)-specific laminins for barrier function with a new in vitro BBB model incorporating multi-culturing system of BBB components. J Neurol Sci 2017;381:966.