DOI QR코드

DOI QR Code

Ginsenoside compound K ameliorates palmitate-induced atrophy in C2C12 myotubes via promyogenic effects and AMPK/autophagy-mediated suppression of endoplasmic reticulum stress

  • Kim, Tae Jin (Department of Pharmacology, College of Medicine, Chung-Ang University) ;
  • Pyun, Do Hyeon (Department of Pharmacology, College of Medicine, Chung-Ang University) ;
  • Kim, Myeong Jun (Department of Pharmacology, College of Medicine, Chung-Ang University) ;
  • Jeong, Ji Hoon (Department of Pharmacology, College of Medicine, Chung-Ang University) ;
  • Abd El-Aty, A.M. (State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science) ;
  • Jung, Tae Woo (Department of Pharmacology, College of Medicine, Chung-Ang University)
  • Received : 2020.08.26
  • Accepted : 2021.09.03
  • Published : 2022.05.01

Abstract

Background: Compound K (CK) is among the protopanaxadiol (PPD)-type ginsenoside group, which produces multiple pharmacological effects. Herein, we examined the effects of CK on muscle atrophy under hyperlipidemic conditions along with its pro-myogenic effects. Further, the molecular pathways underlying the effects of CK on skeletal muscle have been justified. Methods: C2C12 myotubes were treated with palmitate and CK. C2C12 myoblasts were differentiated using CK for 4-5 days. For the in vivo experiments, CK was administered to mice fed on a high-fat diet for 8 weeks. The protein expression levels were analyzed using western blotting analysis. Target protein suppression was performed using small interfering (si) RNA transfection. Histological examination was performed using Jenner-Giemsa and H&E staining techniques. Results: CK treatment attenuated ER stress markers, such as eIF2a phosphorylation and CHOP expression and impaired myotube formation in palmitate-treated C2C12 myotubes and skeletal muscle of mice fed on HFD. CK treatment augmented AMPK along with autophagy markers in skeletal muscle cells in vitro and in vivo experiments. AMPK siRNA or 3-MA, an autophagy inhibitor, abrogated the impacts of CK in C2C12 myotubes. CK treatment augmented p38 and Akt phosphorylation, leading to an enhancement of C2C12 myogenesis. However, AMPK siRNA abolished the effects of CK in C2C12 myoblasts. Conclusion: These findings denote that CK prevents lipid-induced skeletal muscle apoptosis via AMPK/autophagy-mediated attenuation of ER stress and induction of myoblast differentiation. Therefore, we may suggest the use of CK as a potential therapeutic approach for treating muscle-wasting conditions associated with obesity.

Keywords

Acknowledgement

This study was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2019R1A2C4070189), and by the Chung-Ang Research Scholarship Grants of 2020.

References

  1. Sanchez AM, Csibi A, Raibon A, Docquier A, Lagirand-Cantaloube J, Leibovitch MP, Leibovitch SA, Bernardi H. eIF3f: a central regulator of the antagonism atrophy/hypertrophy in skeletal muscle. Int J Biochem Cell Biol 2013;45(10):2158-62. https://doi.org/10.1016/j.biocel.2013.06.001
  2. Wang Y, Pessin JE. Mechanisms for fiber-type specificity of skeletal muscle atrophy. Curr Opin Clin Nutr Metab Care 2013;16(3):243-50. https://doi.org/10.1097/MCO.0b013e328360272d
  3. von Maltzahn J, Chang NC, Bentzinger CF, Rudnicki MA. Wnt signaling in myogenesis. Trends Cell Biol 2012;22(11):602-9. https://doi.org/10.1016/j.tcb.2012.07.008
  4. Bryner RW, Woodworth-Hobbs ME, Williamson DL, Alway SE. Docosahexaenoic Acid protects muscle cells from palmitate-induced atrophy. ISRN Obes 2012:647348. https://doi.org/10.5402/2012/647348
  5. Houmard JA, Tanner CJ, Yu C, Cunningham PG, Pories WJ, MacDonald KG, Shulman GI. Effect of weight loss on insulin sensitivity and intramuscular long-chain fatty acyl-CoAs in morbidly obese subjects. Diabetes 2002;51(10):2959-63. https://doi.org/10.2337/diabetes.51.10.2959
  6. Peterson JM, Bryner RW, Alway SE. Satellite cell proliferation is reduced in muscles of obese Zucker rats but restored with loading. Am J Physiol Cell Physiol 2008;295(2):C521-8. https://doi.org/10.1152/ajpcell.00073.2008
  7. Han J, Back SH, Hur J, Lin YH, Gildersleeve R, Shan J, Yuan CL, Krokowski D, Wang S, Hatzoglou M, Kilberg MS, Sartor MA, Kaufman RJ. ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat Cell Biol 2013;15(5):481-90. https://doi.org/10.1038/ncb2738
  8. Reddy SS, Shruthi K, Prabhakar YK, Sailaja G, Reddy GB. Implication of altered ubiquitin-proteasome system and ER stress in the muscle atrophy of diabetic rats. Arch Biochem Biophys 2018;639:16-25. https://doi.org/10.1016/j.abb.2017.12.015
  9. Woodworth-Hobbs ME, Perry BD, Rahnert JA, Hudson MB, Zheng B, Russ Price S. Docosahexaenoic acid counteracts palmitate-induced endoplasmic reticulum stress in C2C12 myotubes: impact on muscle atrophy. Phys Rep 2017;5(23).
  10. Zhang Z, Du GJ, Wang CZ, Wen XD, Calway T, Li Z, He TC, Du W, Bissonnette M, Musch MW, Chang EB, Yuan CS. Compound K, a ginsenoside metabolite, inhibits colon cancer growth via multiple pathways including p53-p21 interactions. Int J Mol Sci 2013;14(2):2980-95. https://doi.org/10.3390/ijms14022980
  11. Chen J, Wu H, Wang Q, Chang Y, Liu K, Song S, Yuan P, Fu J, Sun W, Huang Q, Liu L, Wu Y, Zhang Y, Zhou A, Wei W. Ginsenoside metabolite compound k alleviates adjuvant-induced arthritis by suppressing T cell activation. Inflammation 2014;37(5):1608-15. https://doi.org/10.1007/s10753-014-9887-0
  12. Shin YW, Kim DH. Antipruritic effect of ginsenoside rb1 and compound k in scratching behavior mouse models. J Pharmacol Sci 2005;99(1):83-8. https://doi.org/10.1254/jphs.FP0050260
  13. Kim S, Kang BY, Cho SY, Sung DS, Chang HK, Yeom MH, Kim DH, Sim YC, Lee YS. Compound K induces expression of hyaluronan synthase 2 gene in transformed human keratinocytes and increases hyaluronan in hairless mouse skin. Biochem Biophys Res Commun 2004;316(2):348-55. https://doi.org/10.1016/j.bbrc.2004.02.046
  14. Oh J, Kim JS. Compound K derived from ginseng: neuroprotection and cognitive improvement. Food Funct 2016;7(11):4506-15. https://doi.org/10.1039/C6FO01077F
  15. Kim K, Park M, Lee YM, Rhyu MR, Kim HY. Ginsenoside metabolite compound K stimulates glucagon-like peptide-1 secretion in NCI-H716 cells via bile acid receptor activation. Arch Pharm Res (Seoul) 2014;37(9):1193-200. https://doi.org/10.1007/s12272-014-0362-0
  16. Li F, Li X, Peng X, Sun L, Jia S, Wang P, Ma S, Zhao H, Yu Q, Huo H. Ginsenoside Rg1 prevents starvation-induced muscle protein degradation via regulation of AKT/mTOR/FoxO signaling in C2C12 myotubes. Exp Ther Med 2017;14(2):1241-7. https://doi.org/10.3892/etm.2017.4615
  17. Go GY, Jo A, Seo DW, Kim WY, Kim YK, So EY, Chen Q, Kang JS, Bae GU, Lee SJ. Ginsenoside Rb1 and Rb2 upregulate Akt/mTOR signaling-mediated muscular hypertrophy and myoblast differentiation. J Ginseng Res 2020;44(3):435-41. https://doi.org/10.1016/j.jgr.2019.01.007
  18. Jeon JH, Kang B, Lee S, Jin S, Choi MK, Song IS. Pharmacokinetics and intestinal metabolism of compound K in rats and mice. Pharmaceutics 2020;12(2).
  19. Dupont-Versteegden EE. Apoptosis in skeletal muscle and its relevance to atrophy. World J Gastroenterol 2006;12(46):7463-6. https://doi.org/10.3748/wjg.v12.i46.7463
  20. Velica P, Bunce CM. A quick, simple and unbiased method to quantify C2C12 myogenic differentiation. Muscle Nerve 2011;44(3):366-70. https://doi.org/10.1002/mus.22056
  21. Perry BD, Rahnert JA, Xie Y, Zheng B, Woodworth-Hobbs ME, Price SR. Palmitate-induced ER stress and inhibition of protein synthesis in cultured myotubes does not require Toll-like receptor 4. PloS One 2018;13(1):e0191313. https://doi.org/10.1371/journal.pone.0191313
  22. Pyun DH, Kim TJ, Kim MJ, Hong SA, Abd El-Aty AM, Jeong JH, et al. Endogenous metabolite, kynurenic acid, attenuates nonalcoholic fatty liver disease via AMPK/autophagy- and AMPK/ORP150-mediated signaling. J Cell Physiol 2021;236(7):4902-12. https://doi.org/10.1002/jcp.30199
  23. Nwadike C, Williamson LE, Gallagher LE, Guan JL, Chan EYW. AMPK inhibits ULK1-dependent autophagosome formation and lysosomal acidification via distinct mechanisms. Mol Cell Biol 2018;38(10).
  24. Liu M, Qin J, Hao Y, Liu M, Luo J, Luo T, et al. Astragalus polysaccharide suppresses skeletal muscle myostatin expression in diabetes: involvement of ROS-ERK and NF-kappaB pathways. Oxid Med Cell Longev 2013;2013:782497. https://doi.org/10.1155/2013/782497.
  25. Costamagna D, Costelli P, Sampaolesi M, Penna F. Role of inflammation in muscle homeostasis and myogenesis. Mediat Inflamm 2015:805172. https://doi.org/10.1155/2015/805172
  26. Brunetti A, Goldfine ID. Role of myogenin in myoblast differentiation and its regulation by fibroblast growth factor. J Biol Chem 1990;265(11):5960-3. https://doi.org/10.1016/S0021-9258(19)39275-0
  27. Bae GU, Lee JR, Kim BG, Han JW, Leem YE, Lee HJ, Ho SM, Hahn MJ, Kang JS. Cdo interacts with APPL1 and activates Akt in myoblast differentiation. Mol Biol Cell 2010;21(14):2399-411. https://doi.org/10.1091/mbc.E09-12-1011
  28. Bae GU, Kim BG, Lee HJ, Oh JE, Lee SJ, Zhang W, Krauss RS, Kang JS. Cdo binds Abl to promote p38alpha/beta mitogen-activated protein kinase activity and myogenic differentiation. Mol Cell Biol 2009;29(15):4130-43. https://doi.org/10.1128/MCB.00199-09
  29. Fu X, Zhao JX, Liang J, Zhu MJ, Foretz M, Viollet B, Du M. AMP-activated protein kinase mediates myogenin expression and myogenesis via histone deacetylase 5. Am J Physiol Cell Physiol 2013;305(8):C887-95. https://doi.org/10.1152/ajpcell.00124.2013
  30. Bohnert KR, McMillan JD, Kumar A. Emerging roles of ER stress and unfolded protein response pathways in skeletal muscle health and disease. J Cell Physiol 2018;233(1):67-78. https://doi.org/10.1002/jcp.25852
  31. Perry BD, Caldow MK, Brennan-Speranza TC, Sbaraglia M, Jerums G, Garnham A, Wong C, Levinger P, Asrar Ul Haq M, Hare DL, Price SR, Levinger I. Muscle atrophy in patients with Type 2 Diabetes Mellitus: roles of inflammatory pathways, physical activity and exercise. Exerc Immunol Rev 2016;22:94-109.
  32. Hardie DG. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 2007;8(10):774-85. https://doi.org/10.1038/nrm2249
  33. Liu JQ, Zhang L, Yao J, Yao S, Yuan T. AMPK alleviates endoplasmic reticulum stress by inducing the ER-chaperone ORP150 via FOXO1 to protect human bronchial cells from apoptosis. Biochem Biophys Res Commun 2018;497(2):564-70. https://doi.org/10.1016/j.bbrc.2018.02.095
  34. Jung TW, Hong HC, Hwang HJ, Yoo HJ, Baik SH, Choi KM. C1q/TNF-Related Protein 9 (CTRP9) attenuates hepatic steatosis via the autophagy-mediated inhibition of endoplasmic reticulum stress. Mol Cell Endocrinol 2015;417:131-40. https://doi.org/10.1016/j.mce.2015.09.027
  35. Dong Y, Zhang M, Liang B, Xie Z, Zhao Z, Asfa S, Choi HC, Zou MH. Reduction of AMP-activated protein kinase alpha2 increases endoplasmic reticulum stress and atherosclerosis in vivo. Circulation 2010;121(6):792-803. https://doi.org/10.1161/CIRCULATIONAHA.109.900928
  36. Hwang JT, Lee MS, Kim HJ, Sung MJ, Kim HY, Kim MS, Kwon DY. Antiobesity effect of ginsenoside Rg3 involves the AMPK and PPAR-gamma signal pathways. Phytother Res 2009;23(2):262-6. https://doi.org/10.1002/ptr.2606
  37. Lee S, Lee MS, Kim CT, Kim IH, Kim Y. Ginsenoside Rg3 reduces lipid accumulation with AMP-Activated Protein Kinase (AMPK) activation in HepG2 cells. Int J Mol Sci 2012;13(5):5729-39. https://doi.org/10.3390/ijms13055729
  38. Xiao Q, Zhang S, Yang C, Du R, Zhao J, Li J, Xu Y, Qin Y, Gao Y, Huang W. Ginsenoside Rg1 ameliorates palmitic acid-induced hepatic steatosis and inflammation in HepG2 cells via the AMPK/NF-kappaB pathway. Internet J Endocrinol 2019:7514802.
  39. Dai SN, Hou AJ, Zhao SM, Chen XM, Huang HT, Chen BH, Kong HL. Ginsenoside Rb1 ameliorates autophagy of hypoxia cardiomyocytes from neonatal rats via AMP-activated protein kinase pathway. Chin J Integr Med 2019;25(7):521-8. https://doi.org/10.1007/s11655-018-3018-y
  40. Shen L, Xiong Y, Wang DQ, Howles P, Basford JE, Wang J, Xiong YQ, Hui DY, Woods SC, Liu M. Ginsenoside Rb1 reduces fatty liver by activating AMP-activated protein kinase in obese rats. J Lipid Res 2013;54(5):1430-8. https://doi.org/10.1194/jlr.M035907
  41. Lee KT, Jung TW, Lee HJ, Kim SG, Shin YS, Whang WK. The antidiabetic effect of ginsenoside Rb2 via activation of AMPK. Arch Pharm Res (Seoul) 2011;34(7):1201-8. https://doi.org/10.1007/s12272-011-0719-6
  42. Hwang YC, Oh DH, Choi MC, Lee SY, Ahn KJ, Chung HY, Lim SJ, Chung SH, Jeong IK. Compound K attenuates glucose intolerance and hepatic steatosis through AMPK-dependent pathways in type 2 diabetic OLETF rats. Korean J Intern Med 2018;33(2):347-55. https://doi.org/10.3904/kjim.2015.208
  43. Kim DY, Yuan HD, Chung IK, Chung SH. Compound K, intestinal metabolite of ginsenoside, attenuates hepatic lipid accumulation via AMPK activation in human hepatoma cells. J Agric Food Chem 2009;57(4):1532-7. https://doi.org/10.1021/jf802867b
  44. Gatica D, Chiong M, Lavandero S, Klionsky DJ. Molecular mechanisms of autophagy in the cardiovascular system. Circ Res 2015;116(3):456-67. https://doi.org/10.1161/CIRCRESAHA.114.303788
  45. Ogata M, Hino S, Saito A, Morikawa K, Kondo S, Kanemoto S, Murakami T, Taniguchi M, Tanii I, Yoshinaga K, Shiosaka S, Hammarback JA, Urano F, Imaizumi K. Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 2006;26(24):9220-31. https://doi.org/10.1128/MCB.01453-06
  46. Yin J, Gu L, Wang Y, Fan N, Ma Y, Peng Y. Rapamycin improves palmitate-induced ER stress/NF kappa B pathways associated with stimulating autophagy in adipocytes. Mediat Inflamm 2015:272313. https://doi.org/10.1155/2015/272313
  47. Chang JC, Hu WF, Lee WS, Lin JH, Ting PC, Chang HR, Shieh KR, Chen TI, Yang KT. Intermittent hypoxia induces autophagy to protect cardiomyocytes from endoplasmic reticulum stress and apoptosis. Front Physiol 2019;10:995. https://doi.org/10.3389/fphys.2019.00995
  48. Krieg S, Luscher B, Vervoorts J, Dohmen M. Studying the role of AMPK in autophagy. Methods Mol Biol 2018;1732:373-91. https://doi.org/10.1007/978-1-4939-7598-3_24
  49. Hardie DG. AMPK and autophagy get connected. EMBO J 2011;30(4):634-5. https://doi.org/10.1038/emboj.2011.12
  50. Wang DT, Yang YJ, Huang RH, Zhang ZH, Lin X. Myostatin activates the ubiquitin-proteasome and autophagy-lysosome systems contributing to muscle wasting in chronic kidney disease. Oxid Med Cell Longev 2015:684965. https://doi.org/10.1155/2015/684965
  51. Keren A, Tamir Y, Bengal E. The p38 MAPK signaling pathway: a major regulator of skeletal muscle development. Mol Cell Endocrinol 2006;252(1-2):224-30. https://doi.org/10.1016/j.mce.2006.03.017
  52. Florini JR, Ewton DZ, Coolican SA. Growth hormone and the insulin-like growth factor system in myogenesis. Endocr Rev 1996;17(5):481-517. https://doi.org/10.1210/edrv-17-5-481
  53. Du M, Yan X, Tong JF, Zhao J, Zhu MJ. Maternal obesity, inflammation, and fetal skeletal muscle development. Biol Reprod 2010;82(1):4-12. https://doi.org/10.1095/biolreprod.109.077099