DOI QR코드

DOI QR Code

Gintonin-enriched fraction protects against sarcopenic obesity by promoting energy expenditure and attenuating skeletal muscle atrophy in high-fat diet-fed mice

  • Jin, Heegu (Department of Food Science and Biotechnology, College of Life Science, CHA University) ;
  • Oh, Hyun-Ji (Department of Food Science and Biotechnology, College of Life Science, CHA University) ;
  • Nah, Seung-Yeol (Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University) ;
  • Lee, Boo-Yong (Department of Food Science and Biotechnology, College of Life Science, CHA University)
  • Received : 2021.05.14
  • Accepted : 2021.10.06
  • Published : 2022.05.01

Abstract

Background: Gintonin-enriched fraction (GEF), a non-saponin fraction of ginseng, is a novel glycolipoprotein rich in hydrophobic amino acids. GEF has recently been shown to regulate lipid metabolism and browning in adipocytes; however, the mechanisms underlying its effects on energy metabolism and whether it affects sarcopenic obesity are unclear. We aimed to evaluate the effects of GEF on skeletal muscle atrophy in high-fat diet (HFD)-induced obese mice. Methods: To examine the effect of GEF on sarcopenic obesity, 4-week-old male ICR mice were used. The mice were divided into four groups: chow diet (CD), HFD, HFD supplemented with 50 mg/kg/day GEF, or 150 mg/kg/day GEF for 6 weeks. We analyzed body mass gain and grip strength, histological staining, western blot analysis, and immunofluorescence to quantify changes in sarcopenic obesity-related factors. Results: GEF inhibited body mass gain while HFD-fed mice gained 22.7 ± 2.0 g, whereas GEF-treated mice gained 14.3 ± 1.2 g for GEF50 and 11.8 ± 1.6 g for GEF150 by downregulating adipogenesis and inducing lipolysis and browning in white adipose tissue (WAT). GEF also enhanced mitochondrial biogenesis threefold in skeletal muscle. Furthermore, GEF-treated skeletal muscle exhibited decreased expression of muscle-specific atrophic genes, and promoted myogenic differentiation and increased muscle mass and strength in a dose-dependent manner (p < 0.05). Conclusion: These findings indicate that GEF may have potential uses in preventing sarcopenic obesity by promoting energy expenditure and attenuating skeletal muscle atrophy.

Keywords

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2021R1A2C2006180).

References

  1. Fonseca DC, Sala P, de Azevedo Muner Ferreira B, Reis J, Torrinhas RS, Bendavid I, Linetzky Waitzberg D. Body weight control and energy expenditure. Clin Nutr Exp 2018;20:55-9. https://doi.org/10.1016/j.yclnex.2018.04.001
  2. Townsend K, Tseng Y-H. Brown adipose tissue: recent insights into development, metabolic function and therapeutic potential. Adipocyte 2012;1(1):13-24. https://doi.org/10.4161/adip.18951
  3. Coelho M, Oliveira T, Fernandes R. Biochemistry of adipose tissue: an endocrine organ. Arch Med Sci 2013;9(2):191-200.
  4. Cedikova M, Kripnerova M, Dvorakova J, Pitule P, Grundmanova M, Babuska V, Mullerova D, Kuncova J. Mitochondria in white, Brown, and beige adipocytes. Stem Cell Int 2016;2016:6067349. 6067349. https://doi.org/10.1155/2016/6067349
  5. Yau WW, Yen PM. Thermogenesis in adipose tissue activated by thyroid hormone. Int J Mol Sci 2020;21(8):3020. https://doi.org/10.3390/ijms21083020
  6. Kurylowicz A, Puzianowska-Kuznicka M. Induction of adipose tissue browning as a strategy to combat obesity. Int J Mol Sci 2020;21(17).
  7. Zhu S, Cheng G, Zhu H, Guan G. A study of genes involved in adipocyte differentiation. J Pediatr Endocrinol Metab 2015;28(1-2):93-9. https://doi.org/10.1515/jpem-2014-0002
  8. Sarjeant K, Stephens JM. Adipogenesis. Cold Spring Harb Perspect Biol 2012;4(9):a008417. a008417. https://doi.org/10.1101/cshperspect.a008417
  9. Moseti D, Regassa A, Kim W-K. Molecular regulation of adipogenesis and potential anti-adipogenic bioactive molecules. Int J Mol Sci 2016;17(1):124. https://doi.org/10.3390/ijms17010124
  10. Ravussin E, Galgani JE. The implication of brown adipose tissue for humans. Annu Rev Nutr 2011;31:33-47. https://doi.org/10.1146/annurev-nutr-072610-145209
  11. Braun K, Oeckl J, Westermeier J, Li Y, Klingenspor M. Non-adrenergic control of lipolysis and thermogenesis in adipose tissues. J Exp Biol 2018;221(Pt Suppl 1).
  12. Duncan RE, Ahmadian M, Jaworski K, Sarkadi-Nagy E, Sul HS. Regulation of lipolysis in adipocytes. Annu Rev Nutr 2007;27:79-101. https://doi.org/10.1146/annurev.nutr.27.061406.093734
  13. Wu L, Zhang L, Li B, Jiang H, Duan Y, Xie Z, Shuai L, Li J, Li J. AMP-activated protein kinase (AMPK) regulates energy metabolism through modulating thermogenesis in adipose tissue. Front Physiol 2018;9:122. 122.
  14. Ricquier D. Uncoupling protein 1 of brown adipocytes, the only uncoupler: a historical perspective. Front Endocrinol 2011;2:85. 85. https://doi.org/10.3389/fendo.2011.00085
  15. Poher A-L, Altirriba J, Veyrat-Durebex C, Rohner-Jeanrenaud F. Brown adipose tissue activity as a target for the treatment of obesity/insulin resistance. Front Physiol 2015;6:4. 4. https://doi.org/10.3389/fphys.2015.00004
  16. Strasser B. Physical activity in obesity and metabolic syndrome. Ann N Y Acad Sci 2013;1281(1):141-59. https://doi.org/10.1111/j.1749-6632.2012.06785.x
  17. Stenholm S, Harris TB, Rantanen T, Visser M, Kritchevsky SB, Ferrucci L. Sarcopenic obesity: definition, cause and consequences. Curr Opin Clin Nutr Metab Care 2008;11(6):693-700. https://doi.org/10.1097/MCO.0b013e328312c37d
  18. Wannamethee SG, Atkins JL. Muscle loss and obesity: the health implications of sarcopenia and sarcopenic obesity. Proc Nutr Soc 2015;74(4):405-12. https://doi.org/10.1017/S002966511500169X
  19. Das M, Sauceda C, Webster NJG. Mitochondrial dysfunction in obesity and reproduction. Endocrinology 2021;162(1).
  20. Bonnard C, Durand A, Peyrol S, Chanseaume E, Chauvin MA, Morio B, Vidal H, Rieusset J. Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice. J Clin Invest 2008;118(2):789-800. https://doi.org/10.1172/JCI32601
  21. Kelley DE, He J, Menshikova EV, Ritov VB. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 2002;51(10):2944-50. https://doi.org/10.2337/diabetes.51.10.2944
  22. Vaughan RA, Mermier CM, Bisoffi M, Trujillo KA, Conn CA. Dietary stimulators of the PGC-1 superfamily and mitochondrial biosynthesis in skeletal muscle. A mini-review. J Physiol Biochem 2014;70(1):271-84. https://doi.org/10.1007/s13105-013-0301-4
  23. Lima TI, Guimaraes D, Sponton CH, Bajgelman MC, Palameta S, Toscaro JM, ~ Reis O, Silveira LR. Essential role of the PGC-1a/PPARb axis in Ucp3 gene induction. J Physiol 2019;597(16):4277-91. https://doi.org/10.1113/jp278006
  24. Pohl EE, Rupprecht A, Macher G, Hilse KE. Important trends in UCP3 investigation. Front Physiol 2019;10:470. 470. https://doi.org/10.3389/fphys.2019.00470
  25. Schrauwen P. Skeletal muscle uncoupling protein 3 (UCP3): mitochondrial uncoupling protein in search of a function. Curr Opin Clin Nutr Metab Care 2002;5(3):265-70. https://doi.org/10.1097/00075197-200205000-00005
  26. Prado CM, Wells JC, Smith SR, Stephan BC, Siervo M. Sarcopenic obesity: a Critical appraisal of the current evidence. Clin Nutr (Edinb) 2012;31(5):583-601. https://doi.org/10.1016/j.clnu.2012.06.010
  27. Abrigo J, Rivera JC, Aravena J, Cabrera D, Simon F, Ezquer F, Ezquer M, Cabello-Verrugio C. High fat diet-induced skeletal muscle wasting is decreased by mesenchymal stem cells administration: implications on oxidative stress, ubiquitin proteasome pathway activation, and myonuclear apoptosis. Oxid Med Cell Longev 2016 2016:9047821. 9047821.
  28. Yokota T, Kinugawa S, Hirabayashi K, Matsushima S, Inoue N, Ohta Y, Hamaguchi S, Sobirin MA, Ono T, Suga T, Kuroda S, Tanaka S, Terasaki F, Okita K, Tsutsui H. Oxidative stress in skeletal muscle impairs mitochondrial respiration and limits exercise capacity in type 2 diabetic mice. Am J Physiol Heart Circ Physiol 2009;297(3):H1069-77. https://doi.org/10.1152/ajpheart.00267.2009
  29. Peterson JM, Bryner RW, Alway SE. Satellite cell proliferation is reduced in muscles of obese Zucker rats but restored with loading, American journal of physiology. Cell Physiol 2008;295(2):C521-8. https://doi.org/10.1152/ajpcell.00073.2008
  30. Warmington SA, Tolan R, McBennett S. Functional and histological characteristics of skeletal muscle and the effects of leptin in the genetically obese (ob/ob) mouse. Int J Obes 2000;24(8):1040-50. https://doi.org/10.1038/sj.ijo.0801357
  31. Sandri M. Protein breakdown in muscle wasting: role of autophagy-lysosome and ubiquitin-proteasome. Int J Biochem Cell Biol 2013;45(10):2121-9. https://doi.org/10.1016/j.biocel.2013.04.023
  32. Bodine SC, Baehr LM. Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. Am J Physiol Endocrinol Metab 2014;307(6):E469-84. https://doi.org/10.1152/ajpendo.00204.2014
  33. Bell RAV, Al-Khalaf M, Megeney LA. The beneficial role of proteolysis in skeletal muscle growth and stress adaptation. Skeletal Muscle 2016;6(1):16. https://doi.org/10.1186/s13395-016-0086-6
  34. Hernandez-Hernandez JM, Garcia-Gonzalez EG, Brun CE, Rudnicki MA. The myogenic regulatory factors, determinants of muscle development, cell identity and regeneration. Semin Cell Dev Biol 2017;72:10-8. https://doi.org/10.1016/j.semcdb.2017.11.010
  35. Chaillou T, Lanner JT. Regulation of myogenesis and skeletal muscle regeneration: effects of oxygen levels on satellite cell activity. Faseb J 2016;30(12):3929-41. https://doi.org/10.1096/fj.201600757R
  36. Bentzinger CF, Wang YX, Rudnicki MA. Building muscle: molecular regulation of myogenesis. Cold Spring Harb Perspect Biol 2012;4(2):a008342. https://doi.org/10.1101/cshperspect.a008342
  37. Zhang H, Abid S, Ahn JC, Mathiyalagan R, Kim Y-J, Yang D-C, Wang Y. Characteristics of Panax ginseng cultivars in Korea and China. Molecules 2020;25(11):2635. https://doi.org/10.3390/molecules25112635
  38. Choi KT. Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng C A Meyer. Acta Pharmacol Sin 2008;29(9):1109-18. https://doi.org/10.1111/j.1745-7254.2008.00869.x
  39. Hwang SH, Shin EJ, Shin TJ, Lee BH, Choi SH, Kang J, Kim HJ, Kwon SH, Jang CG, Lee JH, Kim HC, Nah SY. Gintonin, a ginseng-derived lysophosphatidic acid receptor ligand, attenuates Alzheimer's disease-related neuropathies: involvement of non-amyloidogenic processing. J Alzheim Dis 2012;31(1):207-23. https://doi.org/10.3233/JAD-2012-120439
  40. Choi SH, Hong MK, Kim HJ, Ryoo N, Rhim H, Nah SY, Kang LW. Structure of ginseng major latex-like protein 151 and its proposed lysophosphatidic acid-binding mechanism. Acta Crystallogr Sect D Biol Crystallogr 2015;71(Pt 5):1039-50. https://doi.org/10.1107/S139900471500259X
  41. Lee K, Jin H, Chei S, Oh HJ, Choi SH, Nah SY, Lee BY. The gintonin-enriched fraction of ginseng regulates lipid metabolism and browning via the cAMP-protein kinase a signaling pathway in mice white adipocytes. Biomolecules 2020;10(7).
  42. Choi S-H, Jung S-W, Kim H-S, Kim H-J, Lee B-H, Kim JY, Kim J-H, Hwang SH, Rhim H, Kim H-C, Nah S-Y. A brief method for preparation of gintonin-enriched fraction from ginseng. J Ginseng Res 2015;39(4):398-405. https://doi.org/10.1016/j.jgr.2015.05.002
  43. Barazzoni R, Bischoff S, Boirie Y, Busetto L, Cederholm T, Dicker D, Toplak H, Van Gossum A, Yumuk V, Vettor R. Sarcopenic obesity: time to meet the challenge. Obes Facts 2018;11(4):294-305. https://doi.org/10.1159/000490361
  44. Fu X, Zhu M, Zhang S, Foretz M, Viollet B, Du M. Obesity impairs skeletal muscle regeneration through inhibition of AMPK. Diabetes 2016;65(1):188. https://doi.org/10.2337/db15-0647
  45. Hwang SH, Lee BH, Kim HJ, Cho HJ, Shin HC, Im KS, Choi SH, Shin TJ, Lee SM, Nam SW, Kim HC, Rhim H, Nah SY. Suppression of metastasis of intravenously-inoculated B16/F10 melanoma cells by the novel ginseng-derived ingredient, gintonin: involvement of autotaxin inhibition. Int J Oncol 2013;42(1):317-26. https://doi.org/10.3892/ijo.2012.1709
  46. Liu F, He J, Wang H, Zhu D, Bi Y. Adipose morphology: a critical factor in regulation of human metabolic diseases and adipose tissue dysfunction. Obes Surg 2020;30(12):5086-100. https://doi.org/10.1007/s11695-020-04983-6
  47. Jin H, Lee K, Chei S, Oh HJ, Lee KP, Lee BY. Ecklonia stolonifera extract suppresses lipid accumulation by promoting lipolysis and adipose browning in high-fat diet-induced obese male mice. Cells 2020;9(4).
  48. Townsend KL, Tseng Y-H. Brown fat fuel utilization and thermogenesis. Trends Endocrinol Metabol 2014;25(4):168-77. https://doi.org/10.1016/j.tem.2013.12.004
  49. Bolsoni-Lopes A, Alonso-Vale MI. Lipolysis and lipases in white adipose tissue - an update. Archiv Endocrinol Metab 2015;59(4):335-42. https://doi.org/10.1590/2359-3997000000067
  50. Song N-J, Chang S-H, Li DY, Villanueva CJ, Park KW. Induction of thermogenic adipocytes: molecular targets and thermogenic small molecules. Exp Mol Med 2017;49(7):e353. e353. https://doi.org/10.1038/emm.2017.70
  51. Johannsen DL, Ravussin E. The role of mitochondria in health and disease. Curr Opin Pharmacol 2009;9(6):780-6. https://doi.org/10.1016/j.coph.2009.09.002
  52. Mogensen M, Sahlin K, Fernstrom M, Glintborg D, Vind BF, Beck-Nielsen H, Hojlund K. Mitochondrial respiration is decreased in skeletal muscle of patients with type 2 diabetes. Diabetes 2007;56(6):1592. https://doi.org/10.2337/db06-0981
  53. Gureev AP, Shaforostova EA, Popov VN. Regulation of mitochondrial biogenesis as a way for active longevity: interaction between the Nrf2 and PGC-1α signaling pathways. Front Genet 2019;10:435. 435. https://doi.org/10.3389/fgene.2019.00435
  54. Lee M-S, Kim I-H, Kim Y. Effects of eicosapentaenoic acid and docosahexaenoic acid on uncoupling protein 3 gene expression in C(2)C(12) muscle cells. Nutrients 2013;5(5):1660-71. https://doi.org/10.3390/nu5051660
  55. Yoo A, Jang YJ, Ahn J, Jung CH, Seo HD, Ha TY. Chrysanthemi Zawadskii var. Latilobum attenuates obesity-induced skeletal muscle atrophy via regulation of PRMTs in skeletal muscle of mice. Int J Mol Sci 2020;21(8):2811. https://doi.org/10.3390/ijms21082811
  56. Kitajima Y, Yoshioka K, Suzuki N. The ubiquitineproteasome system in regulation of the skeletal muscle homeostasis and atrophy: from basic science to disorders. J Physiol Sci 2020;70(1):40. https://doi.org/10.1186/s12576-020-00768-9
  57. Ostrovidov S, Hosseini V, Ahadian S, Fujie T, Parthiban SP, Ramalingam M, Bae H, Kaji H, Khademhosseini A. Skeletal muscle tissue engineering: methods to form skeletal myotubes and their applications. Tissue Eng B Rev 2014;20(5):403-36. https://doi.org/10.1089/ten.teb.2013.0534
  58. Schiaffino S, Dyar KA, Ciciliot S, Blaauw B, Sandri M. Mechanisms regulating skeletal muscle growth and atrophy. FEBS J 2013;280(17):4294-314. https://doi.org/10.1111/febs.12253
  59. Wardle FC. Master control: transcriptional regulation of mammalian Myod. J Muscle Res Cell Motil 2019;40(2):211-26. https://doi.org/10.1007/s10974-019-09538-6
  60. Ganassi M, Badodi S, Ortuste Quiroga HP, Zammit PS, Hinits Y, Hughes SM. Myogenin promotes myocyte fusion to balance fibre number and size. Nat Commun 2018;9(1):4232. https://doi.org/10.1038/s41467-018-06583-6