DOI QR코드

DOI QR Code

Oxytocin-induced endothelial nitric oxide dependent vasorelaxation and ERK1/2-mediated vasoconstriction in the rat aorta

  • Xu, Qian (Department of Physiology, Shenyang Medical University) ;
  • Zhuo, Kunping (Department of Physiology, Shenyang Medical University) ;
  • Zhang, Xiaotian (Department of Physiology, Shenyang Medical University) ;
  • Zhang, Yaoxia (Department of Physiology, Shenyang Medical University) ;
  • Xue, Jiaojiao (Department of Physiology, Shenyang Medical University) ;
  • Zhou, Ming-Sheng (Department of Physiology, Shenyang Medical University)
  • 투고 : 2021.12.10
  • 심사 : 2022.02.21
  • 발행 : 2022.07.01

초록

Oxytocin is a neuropeptide produced primarily in the hypothalamus and plays an important role in the regulation of mammalian birth and lactation. It has been shown that oxytocin has important cardiovascular protective effects. Here we investigated the effects of oxytocin on vascular reactivity and underlying the mechanisms in human umbilical vein endothelial cells (HUVECs) in vitro and in rat aorta ex vivo. Oxytocin increased phospho-eNOS (Ser 1177) and phospho-Akt (Ser 473) expression in HUVECs in vitro and the aorta of rat ex vivo. Wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase (PI3K), inhibited oxytocin-induced Akt and eNOS phosphorylation. In the rat aortic rings, oxytocin induced a biphasic vascular reactivity: oxytocin at low dose (10-9-10-8 M) initiated a vasorelaxation followed by a vasoconstriction at high dose (10-7 M). L-NAME (a nitric oxide synthase inhibitor), endothelium removal or wortmannin abolished oxytocin-induced vasorelaxation, and slightly enhanced oxytocin-induced vasoconstriction. Atosiban, an oxytocin/vasopressin 1a receptor inhibitor, totally blocked oxytocin-induced relaxation and vasoconstriction. PD98059 (ERK1/2 inhibitor) partially inhibited oxytocin-induced vasoconstriction. Oxytocin also increased aortic phospho-ERK1/2 expression, which was reduced by either atosiban or PD98059, suggesting that oxytocin-induced vasoconstriction was partially mediated by oxytocin/V1aR activation of ERK1/2. The present study demonstrates that oxytocin can activate different signaling pathways to cause vasorelaxation or vasoconstriction. Oxytocin stimulation of PI3K/eNOS-derived nitric oxide may participate in maintenance of cardiovascular homeostasis, and different vascular reactivities to low or high dose of oxytocin suggest that oxytocin may have different regulatory effects on vascular tone under physiological or pathophysiological conditions.

키워드

과제정보

This work was supported by the grants from the National Natural Science Foundation of China (Nos.81670384, 81970357) to MSZ, and the scientific research projects (20219027) of the college students to QX.

참고문헌

  1. Jurek B, Neumann ID. The oxytocin receptor: from intracellular signaling to behavior. Physiol Rev. 2018;98:1805-1908. https://doi.org/10.1152/physrev.00031.2017
  2. Jankowski M, Broderick TL, Gutkowska J. The role of oxytocin in cardiovascular protection. Front Psychol. 2020;11:2139. https://doi.org/10.3389/fpsyg.2020.02139
  3. Szczepanska-Sadowska E, Wsol A, Cudnoch-Jedrzejewska A, Zera T. Complementary role of oxytocin and vasopressin in cardiovascular regulation. Int J Mol Sci. 2021;22:11465. https://doi.org/10.3390/ijms222111465
  4. McKay EC, Counts SE. Oxytocin receptor signaling in vascular function and stroke. Front Neurosci. 2020;14:574499. https://doi.org/10.3389/fnins.2020.574499
  5. Liu S, Pan S, Tan J, Zhao W, Liu F. Oxytocin inhibits ox-LDL-induced adhesion of monocytic THP-1 cells to human brain microvascular endothelial cells. Toxicol Appl Pharmacol. 2017;337:104-110. https://doi.org/10.1016/j.taap.2017.10.022
  6. Nation DA, Szeto A, Mendez AJ, Brooks LG, Zaias J, Herderick EE, Gonzales J, Noller CM, Schneiderman N, McCabe PM. Oxytocin attenuates atherosclerosis and adipose tissue inflammation in socially isolated ApoE-/- mice. Psychosom Med. 2010;72:376-382. https://doi.org/10.1097/psy.0b013e3181d74c48
  7. Japundzic-Zigon N, Lozic M, Sarenac O, Murphy D. Vasopressin & oxytocin in control of the cardiovascular system: an updated review. Curr Neuropharmacol. 2020;18:14-33. https://doi.org/10.2174/1570159x17666190717150501
  8. Petersson M, Lundeberg T, Uvnas-Moberg K. Oxytocin decreases blood pressure in male but not in female spontaneously hypertensive rats. J Auton Nerv Syst. 1997;66:15-18. https://doi.org/10.1016/S0165-1838(97)00040-4
  9. Gutkowska J, Aliou Y, Lavoie JL, Gaab K, Jankowski M, Broderick TL. Oxytocin decreases diurnal and nocturnal arterial blood pressure in the conscious unrestrained spontaneously hypertensive rat. Pathophysiology. 2016;23:111-121. https://doi.org/10.1016/j.pathophys.2016.03.003
  10. Somjit M, Surojananon J, Kongwattanakul K, Kasemsiri C, Sirisom M, Prawannoa K, Thepsuthammarat K, Komwilaisak R. Comparison of low dose versus high dose of oxytocin for initiating uterine contraction during cesarean delivery: a randomized, controlled, non-inferiority trial. Int J Womens Health. 2020;12:667-673. https://doi.org/10.2147/IJWH.S260073
  11. Wsol A, Wojno O, Puchalska L, Wrzesien R, Szczepanska-Sadowska E, Cudnoch-Jedrzejewska A. Impaired hypotensive effects of centrally acting oxytocin in SHR and WKY rats exposed to chronic mild stress. Am J Physiol Regul Integr Comp Physiol. 2020;318:R160-R172. https://doi.org/10.1152/ajpregu.00050.2019
  12. Oyama H, Suzuki Y, Satoh S, Kajita Y, Takayasu M, Shibuya M, Sugita K. Role of nitric oxide in the cerebral vasodilatory responses to vasopressin and oxytocin in dogs. J Cereb Blood Flow Metab. 1993;13:285-290. https://doi.org/10.1038/jcbfm.1993.35
  13. Suzuki Y, Satoh S, Kimura M, Oyama H, Asano T, Shibuya M, Sugita K. Effects of vasopressin and oxytocin on canine cerebral circulation in vivo. J Neurosurg. 1992;77:424-431. https://doi.org/10.3171/jns.1992.77.3.0424
  14. Katusic ZS, Shepherd JT, Vanhoutte PM. Oxytocin causes endothelium-dependent relaxations of canine basilar arteries by activating V1-vasopressinergic receptors. J Pharmacol Exp Ther. 1986;236:166-170.
  15. Cai R, Hao Y, Liu YY, Huang L, Yao Y, Zhou MS. Tumor necrosis factor alpha deficiency improves endothelial function and cardiovascular injury in deoxycorticosterone acetate/salt-hypertensive mice. Biomed Res Int. 2020;2020:3921074.
  16. Reiss AB, Glass DS, Lam E, Glass AD, De Leon J, Kasselman LJ. Oxytocin: potential to mitigate cardiovascular risk. Peptides. 2019;117:170089. https://doi.org/10.1016/j.peptides.2019.05.001
  17. Faghihi M, Alizadeh AM, Khori V, Latifpour M, Khodayari S. The role of nitric oxide, reactive oxygen species, and protein kinase C in oxytocin-induced cardioprotection in ischemic rat heart. Peptides. 2012;37:314-319. https://doi.org/10.1016/j.peptides.2012.08.001
  18. Szeto A, Nation DA, Mendez AJ, Dominguez-Bendala J, Brooks LG, Schneiderman N, McCabe PM. Oxytocin attenuates NADPH-dependent superoxide activity and IL-6 secretion in macrophages and vascular cells. Am J Physiol Endocrinol Metab. 2008;295:E1495-E1501. https://doi.org/10.1152/ajpendo.90718.2008
  19. Hussien NI, Mousa AM. Could nitric oxide be a mediator of action of oxytocin on myocardial injury in rats? (biochemical, histological and immunohistochemical study). Gen Physiol Biophys. 2016;35:353-362. https://doi.org/10.4149/gpb_2015049
  20. Szeto A, Rossetti MA, Mendez AJ, Noller CM, Herderick EE, Gonzales JA, Schneiderman N, McCabe PM. Oxytocin administration attenuates atherosclerosis and inflammation in Watanabe Heritable Hyperlipidemic rabbits. Psychoneuroendocrinology. 2013;38:685-693. https://doi.org/10.1016/j.psyneuen.2012.08.009
  21. Gonzalez-Reyes A, Menaouar A, Yip D, Danalache B, Plante E, Noiseux N, Gutkowska J, Jankowski M. Molecular mechanisms underlying oxytocin-induced cardiomyocyte protection from simulated ischemia-reperfusion. Mol Cell Endocrinol. 2015;412:170-181. https://doi.org/10.1016/j.mce.2015.04.028
  22. Anvari MA, Imani A, Faghihi M, Karimian SM, Moghimian M, Khansari M. The administration of oxytocin during early reperfusion, dose-dependently protects the isolated male rat heart against ischemia/reperfusion injury. Eur J Pharmacol. 2012;682:137-141. https://doi.org/10.1016/j.ejphar.2012.02.029
  23. Gutkowska J, Jankowski M, Antunes-Rodrigues J. The role of oxytocin in cardiovascular regulation. Braz J Med Biol Res. 2014;47:206-214. https://doi.org/10.1590/1414-431X20133309
  24. Cattaneo MG, Chini B, Vicentini LM. Oxytocin stimulates migration and invasion in human endothelial cells. Br J Pharmacol. 2008;153:728-736. https://doi.org/10.1038/sj.bjp.0707609
  25. Florian M, Jankowski M, Gutkowska J. Oxytocin increases glucose uptake in neonatal rat cardiomyocytes. Endocrinology. 2010;151:482-491. https://doi.org/10.1210/en.2009-0624
  26. Zhou MS, Schulman IH, Raij L. Nitric oxide, angiotensin II, and hypertension. Semin Nephrol. 2004;24:366-378. https://doi.org/10.1016/j.semnephrol.2004.04.008
  27. Japundzic-Zigon N. Vasopressin and oxytocin in control of the cardiovascular system. Curr Neuropharmacol. 2013;11:218-230. https://doi.org/10.2174/1570159X11311020008
  28. Wisniewski K. Design of oxytocin analogs. Methods Mol Biol. 2019;2001:235-271. https://doi.org/10.1007/978-1-4939-9504-2_11
  29. Zhong M, Yang M, Sanborn BM. Extracellular signal-regulated kinase 1/2 activation by myometrial oxytocin receptor involves GαqGβγ and epidermal growth factor receptor tyrosine kinase activation. Endocrinology. 2003;144:2947-2956. https://doi.org/10.1210/en.2002-221039
  30. Wang P, Qin D, Wang YF. Oxytocin rapidly changes astrocytic GFAP plasticity by differentially modulating the expressions of pERK 1/2 and protein kinase A. Front Mol Neurosci. 2017;10:262. https://doi.org/10.3389/fnmol.2017.00262